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Introduction

Self-avoiding random walks on a lattice with nearest neighbor steps are used to model
polymers. Variations of such walks, such as the Domb-Joyce model where each walk
receives a penalty e−β for every self-intersection are also used. But many questions
are not known rigorously in the most interesting dimensions (two and three). Known
results are in dimension one or dimension five or higher (see [3] for a discussion of
one dimensional random polymers).
In [1] the authors proposed a model of protein folding in which the interaction
between carbon atoms is replaced by linear springs with Gaussian fluctuations. The
equilibrium correlation between fluctuations of two carbon atoms can be expressed
in terms of a connectivity matrix (similar to contact maps used in [4]). Their re-
sults on the variance of atom positions are in good agreement with experimental data.

In the present work we investigate properties related to self-intersections of
random walks on various lattices. We are motivated by [4] where the authors studied
contact maps for self-avoiding walks. The contact map of a self-avoiding walk of
length N is the matrix S ∈ MN+1(R) such that Sij = 1 if steps i and j (i 6= j) are
nearest neighbors and Sij = 0 otherwise. They studied some statistical properties of
these contact maps analytically and also carried out numerical simulations.
Here we will consider random walks that intersect with or without constraints (like
the avoiding of immediate return), the contact matrices of such walks are the matrices
C ∈ MN+1(R) such that Cij = 1 if steps i and j (i 6= j) are at the same spatial
position and Cij = 0 otherwise.
The main quantity we investigate is the exponential growth factor of the number of
different contact matrices in the asymptotic limit when the length of the random
walk goes to infinity. Our principal result is that, to leading order, the number of
contact matrices equals the number of random walks for unweighted random walks.
We also present some results on the degeneracy of the different contact matrices (i.e.
the number of random walks that cannot be distinguished by looking only at C).

Now we describe the structure of this paper.

− In section 1 we give some definitions and introduce the problem to be studied.

− In section 2 we consider the one dimensional random walk.

− In section 3 we consider random walks on a strip. We give the asymptotic
behavior of the number of contact matrices. We also compare the end-to-end
distance of two cases.

− In section 4 we consider random walks on two dimensional lattices. We give
some results on the growth factor, on the degeneracy and on the end-to-end
distance. The recurrence property of these walks will be important.
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− In section 5 we consider simple random walks on Z
d. We give a result on the

degeneracy (proved for d = 3) and on the growth factor. In this case the result
will be determined using properties on large deviation of the support of simple
random walks.

− In section 6 we look at self-avoiding and bond-self-avoiding (i.e. each bond
cannot be occupied more than once). In these case we have a different result on
the growth factor. First we adapt a theorem of Kesten on self-avoiding walks
for bond-self-avoiding walks. After that we give the result on the exponential
growth factor.

− In section 7 we consider a particular case of random walk. Each walk receives a
probability weight as function of the number of intersections. We give a result
directly related to the growth factor but for a weighted number of matrices.
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1 Definitions

We consider the set of random walks on a d-dimensional lattice L starting from the
origin. The random walks are not necessarily simple and while L is often Z

d, it is not
always so (for example it can be isomorphe to a subset of Z

d, like for the honeycomb
lattice). First some definitions.

Definition 1. The probability space (Ω,F , P) is defined as follows:

− Sample space: Ω + {ω = (0, ω(1), ω(2), . . .) s.t. ω(i) ∈ L for i ∈ N
∗},

− Set of events: the σ-algebra is the one generated by the set of cylinders C, which
is defined by

C + {An = {ω ∈ Ω s.t. ω(k) = ak ∈ L for k = 1, . . . , n}, n ≥ 0}.

Let us consider a cylinder

An = {ω ∈ Ω s.t. ω(k) = ak ∈ L for k = 1, . . . , n} ≡ [a1, . . . , an].

The complementary set Ac
n is given by

Ac
n = {ω ∈ Ω s.t. ω(k) 6= ak ∈ L for at least a k ∈ {1, . . . , n}}

≡
⋃

b1,...,bn s.t.

∃i s.t. ai 6=bi

[b1, . . . , bn]

and the union of two cylinders An = [a1, . . . , an] and Bm = [b1, . . . , bm] is given
by

An ∪ Bm = {ω ∈ Ω s.t. ω(i) ∈ {ai, bi} for i = 1, . . . , min{n,m}}.
Let C̃ be the algebra generated by C. Then F = τ(C̃) is the σ-algebra generated

by C̃.

− Probability measure: we define the probability measure on the cylinders.

P(An) + P(ω(1) = a1, . . . , ω(n) = an)

P(A0) + 1.

The probability measure depends on the constraints on random walks. Since it
is bounded (P(Ω) = 1) there exists an unique extension of the measure P on the
σ-algebra F .

We will often consider the random walks with a fixed length N . In this case
Ω′

N + {ω = (0, ω(1), . . . , ω(N)) s.t. ω(i) ∈ L}, the σ-algebra considered is the one
generated by the set of cylinders of length N at most.
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The probability PN is defined in the same way1. In fact we are interested in those
ω ∈ Ω′

N that occur with non-zero probability. Therefore we define

ΩN + {ω ∈ Ω′
N s.t. PN(ω) 6= 0}.

Let the cardinality of ΩN be denoted by Card(ΩN). In what follows, with the only
exception of section 7, we give the same weight to each ω ∈ ΩN :

PN(ω) =
1

Card(ΩN)
.

Definition 2 (Random walk). Let L be a d-dimensional lattice (e.g. Z
d). A random

walk of length N , a N-random walk, is an element of ΩN .

Definition 3 (Simple random walk). The simple random walk on Z
d is the one

such that the vector-valued displacements Xk are independent and identically dis-
tributed with P(Xk = ei) = P(Xk = −ei) = 1

2d
where Z

d 3 (ei)k = δk,i, i = 1, . . . , d.

Definition 4 (Concatenation). The concatenation of two walks ω1 and ω2 of length
N1 and N2 respectively is the walk of length N1 + N2 defined as follows:

ω(k) =

{
ω1(k) for k = 0, . . . , N1,
ω1(N1) + ω2(k − N1) − ω2(0) for k = N1 + 1, . . . , N1 + N2.

Definition 5 (Support or Range of a random walk).
The support (or range) of a N-random walk ω = (0, ω(1), . . . , ω(N)) is the number of
different lattice sites visited by the random walk, i.e.

RN + Card({0, ω(1), . . . , ω(N)}).

Definition 6 (Intersections). The number of intersections of a random walk is
defined to be the number of steps for which the random walk visits a place that was
already visited by it. Therefore the number of intersection is N + 1 − RN .

Definition 7 (Contact matrices). Let ω = (0, ω(1), . . . , ω(N)) ∈ ΩN be a random
walk of length N . We define the application C

C : ΩN 7−→ MN+1(R)

ω −→ Ci,j(ω), i, j ∈ {0, . . . , N}

where Ci,j(ω) =

{
1 if ω(i) = ω(j), i 6= j,
0 otherwise.

The contact matrix of ω is its image by C. The degeneracy of a contact matrix is
the number of random walks corresponding to that contact matrix2.

1In what follows the index N on PN will not be written explicitly when not necessary.
2See figure 1, page 4.
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Definition 8 (Growth factor). Let W (N) be the total number of different contact
matrices of the N-random walks. The growth factor of W (N) is given by

γN +
ln W (N)

ln Card(ΩN)

The limit of the growth factor is denoted by γ̄:

γ̄ + lim
N→∞

γN

In the case considered (except for the m-strip with m > 2) the cardinality of ΩN

is well defined because for each step we have a fixed number of choices3, say C, then
Card(ΩN) = CN and ln Card(ΩN )

N
= ln C. For the m-strip with m > 2 we expect that

exists a C such that limN→∞
lnCard(ΩN )

N
= ln C (but it is not necessary for the proof).

The existence of the limit is assured by a superadditivity property.

Proposition 9.
The total number of different contact matrices W (N) satisfies

W (N + M) ≥ W (N)W (M) (1)

and this implies that

lim
N→∞

ln W (N)

N
exists in (−∞,∞] (2)

and is equal to

lim
N→∞

ln W (N)

N
= sup

N≥1

ln W (N)

N
(3)

Proof.

Let us consider two contact matrices P1 ∈ MN+1(R) and P2 ∈ MM+1(R). Then for
each choice of ω1 and ω2 whose contact matrices are P1 and P2 respectively, the contact
matrix P ∈ MM+N+1(R) of ω = ω1 ◦ ω2, the concatenation4 of ω1 and ω2, is of the
form

P =

(
P1 Q
QT P2

)

where Q is a matrix in MM,N (R) that depends on the intersection of ω1 and ω2,
(P1)N+1,N+1 and (P2)1,1 overlap. Since generally each contact matrix corresponds to
more than one random walk, whose intersections with another walk can be different,
W (N + M) is greater than W (N)W (M) and equation (1) is verified.
The sequence {ln W (N)}N≥1 is superadditive. It also clearly has an upper bound
N ln D (D is the coordinations number of L), so (2) and (3) hold (see lemma 1.2.2
[7]).

3The first step can have a different number of choices, C ′, in which case Card(ΩN ) = CN−1C ′

but the behavior is exactly the same.
4It is always possible to choose, for each P2, a ω2 such that the concatenation satisfies an eventual

constraint related to the previous step because of the first step freedom.
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Definition 10 (End-to-end distance). Let us consider a random walk on a lattice
L and let X1, . . . , XN be the vector-valued displacements. Then the total displacement
is given by the random variable SN +

∑N
k=1 Xk. The end-to-end distance is defined

by
√

E(S2
N).

Formulation of problem

The main question we study is the growth factor of the number of contact matrices.
It can be expressed as

W (N) =
∑

ω∈ΩN

1

deg C(ω)

where the degeneracy of the matrix C(ω), deg C(ω), is the number of different ω
which give the same C(ω).

PSfrag replacements

ΩN

A walk ω

A subset of walks
with the same
contact matrix

Figure 1: Illustration of contact matrices and random walks.

Example 11. In the next figure, the first two random walks have the same contact
matrix and the third one has a different contact matrix.



DEFINITIONS 5

PSfrag replacements

1

2
3

4

56

7

8 9

10

11

12

13
14

15 16

17

18

19
20

21

22

23

walk ω1

walk ω2

walk ω3

PSfrag replacements

1

2

3

4

5 6

7

8

9

10

11
12

13

14

15

16

17

18

19
20

21

22

23

walk ω1

walk ω2walk ω3

PSfrag replacements

1 2

3

4
5 6

7

8

9

1011

12

13

14

15
16

17

18 19

20

21

22

23

walk ω1

walk ω2

walk ω3

Figure 2: Three random walks of same length (23 steps). ω1 and ω2 have the same contact matrix
because they have the same intersections (1 = 5, 3 = 13, 9 = 21, 10 = 20). The contact matrix of
ω3 is different because its intersections are 2 = 16, 10 = 20, 11 = 23, 13 = 17.
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2 The one dimensional random walk

The one dimensional case is almost trivial. In fact, let us consider a N -random
walk on Z (with unit steps), ω = (0, ω(1), . . . , ω(N)). The cardinality of ΩN is 2N .
Because of the symmetry of the positive and negative direction, the random walks
ω = (0, ω(1), . . . , ω(N)) and ω′

+ −ω = (0,−ω(1), . . . ,−ω(N)) correspond to the
same contact matrix. Let us consider the class of random walks such that ω1 = 1.
Then for each choice of the next N −1 steps the corresponding contact matrix will be
different. In fact for the step k the contact matrix will have Ck,k−2 = 1 in the case that
the random walk come back immediately or Ck,k−2 = 0 in the case that the random
walk does not turn at step k.
Therefore the total number of different contact matrices W (N) for the set of N -
random walk is

W (N) = 2N−1.

The degeneracy of each contact matrix is exactly two and the growth factor is

γN =
N − 1

N
−→ γ̄ = 1 as N → ∞.

3 Random walk on a strip

We consider a random walk on a m-strip, i.e. the lattice Z × {0, . . . ,m − 1}. We
prove that, if the probability that the end-to-end distance of an N -random walk
satisfies some weak decreasing conditions, then the growth factor goes to 1 as N goes
to infinity. To achieve this goal we find a lower bound of γN that converges to 1 as
N goes to infinity.
For the case of a 2-strip the cardinality of the total set of random walk is well defined.
For the unconstrained random walk we have Card(ΩN) = 3N and for the case in
which the random walk cannot come back immediately Card(ΩN) = 3 · 2N−1. In the
case of a m-strip the cardinality of ΩN grows exponentially in N , Card(ΩN) = eτNN

(clearly τN ≥ 2)5.

First we give the proposition for m ∈ N fixed. After that we verify the hypothesis
used in the proposition for the x-component of the position (the one whose value can
be in all Z) for m = 2, both for an unconstrained random walk and for a random
walk that cannot come back immediately. We also give an argument for the m-strip.

Let us consider a random walk on a m-strip starting from (0, k) with
0 ≤ k ≤ m − 1. We are interested in the position of the x-component of the ran-
dom walk after N steps: SN . We introduce the random variables of the displacement
in the x-direction Xi, i = 1, . . . , N and the random variable SN +

∑N
i=1 Xi.

5For the random walk on a m-strip without constraints, τN goes to 4 − 3

2m−1
when N → ∞.
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Proposition 12.
Let X1, . . . , XN be 1D random variables corresponding to the x-component of a N-
random walk (the only non-zero probabilities are P(Xi = 1), P(Xi = 0) and P(Xi =
−1)) and SN +

∑N
i=1 Xi. If SN satisfies the following property6:

1. B + lim sup
N→∞

max
0≤i≤N

NP (|Si| ≥ Nα) < 1 for some α < 1,

then

γ̄ = lim
N→∞

ln(W (N))

ln(Card(ΩN))
= 1.

Proof.

Let ΩN be the set of all random walks on an m-strip starting from (0, y0). In the
unconstrained case (case a) 3N ≤ Card(ΩN) ≤ 4N and in the second case (case b)
2N ≤ Card(ΩN) ≤ 3N .
We subdivide ΩN in two disjoint subsets Ω0 and (Ω0)c:

1. ΩN ⊃ Ω0
+ {ω ∈ ΩN s.t. |Si| < Nα,∀ i ∈ {0, . . . , N}},

2. ΩN ⊃ (Ω0)c = {ω ∈ ΩN s.t. ∃i ∈ {0, . . . , N} s.t. |Si| ≥ Nα}.

First we find an upper bound for Card((Ω0)c) = Card(ΩN)P(ω ∈ (Ω0)c).

P(ω ∈ (Ω0)c) = P ({∃i ∈ {1, . . . , N} s.t. |Si| ≥ Nα})
= P

(⋃N
i=1 {|Si| ≥ Nα}

)

≤ ∑N
i=1 P(|Si| ≥ Nα)

≤ NTN ,

where TN + max0≤i≤N P(|Si| ≥ Nα).
Then

Card((Ω0)c) ≤ Card(ΩN)NTN .

But as ΩN = Ω0 ∪ (Ω0)c and Ω0 ∩ (Ω0)c = ∅,

Card(Ω0) = Card(ΩN) − Card((Ω0)c) ≥ Card(ΩN) (1 − NTN) . (4)

We consider a subset of Ω0:

Ω0 ⊃ Ω̃ + {ω ∈ Ω0 s.t. ω(i) = ω̃(i),∀ i ∈ {0, . . . ,m(N,α)}}

where m(N,α) ≤ [Nα − 1](2m + 2) + 3(m − 1) and ω̃ is the following (fixed)
m(N,α)-random walk7. ω̃ starts from (0, y0), finishes in (0, y0) and covers all points
of the strip such that |x| ≤ [Nα]− 1. The construction of such a walk is simple. First
ω̃ goes from (0, y0) to (−[Nα] + 1, y0) directly, then to (−[Nα] + 1, 0) directly. After

6In fact this property can be replaced by a more general one: 1

N
ln (1 − NP(|Si| ≥ Nα)) → 0 as

N → ∞, for all 0 ≤ i ≤ N .
7[z] is the integer part of z.
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that we fill all the desired points (remaining always in the rectangle to be filled).
In fact we can choose ω̃ such that it goes straight from left to right, then increase
the y-component of by one unit and goes from the right to the left directly. This
procedure is repeated until the rectangle is filled. After that ω̃ goes from corner to
the starting point in less than m + [Nα − 1] steps.

Now we estimate Card(Ω̃):

P(ω ∈ Ω̃) = P(ω ∈ Ω0 ∩ ω(0) = ω̃(0) ∩ . . . ∩ ω(m(N,α)) = ω̃(m(N,α)))

= P(ω ∈ Ω0)P

(
m(N,α)⋂

i=0

ω(i) = ω̃(i)

ω ∈ Ω0

)

= P(ω ∈ Ω0)

m(N,α)∏

i=1

P

(
ω(i) = ω̃(i)


i−1⋂

k=0

ω(k) = ω̃(k), ω ∈ Ω0

)

≥ P(ω ∈ Ω0)

{
4−m(N,α) in the case a,
3−m(N,α) in the case b.

We have obtained:

Card(Ω̃) ≥ Card(Ω0)

{
4−m(N,α) in the case a,
3−m(N,α) in the case b.

(5)

Putting together equations (4) and (5) we obtain,
for the case a:

Card(Ω̃) ≥ 4−m(N,α)(1 − NP(|SN | ≥ Nα)) Card(ΩN)

and then

lim
N→∞

ln Card(Ω̃)

ln Card(ΩN)
= lim

N→∞

(
1 − m(N,α) ln 4

N ln τN
+

ln

→1−B>0,N→∞︷ ︸︸ ︷
(1 − NTN)

N ln τN

)

= 1 because α < 1 and hypothesis 1. (6)

For the case b we proceed exactly in the same way. Now we can conclude the proof
because W (N) ≥ Card(Ω̃). In fact, let ω ∈ Ω̃, then for each step from m(N,α) + 1
to N the path intersects one of the first m(N,α) steps, therefore for each choice of
these N − m(N,α) + 1 steps we obtain a different contact matrix. Moreover, since
W (N) ≤ Card(ΩN), we have

1 ≥ lim
N→∞

ln W (N)

ln Card(ΩN)
≥ lim

N→∞

ln Card(Ω̃)

ln Card(ΩN)
= 1.
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3.1 The unconstrained random walk on a 2-strip

In this case the random variables of the x-displacements Xi, i = 1, . . . , N are iid and
such that

P(Xi = 1) = P(Xi = −1) = P(Xi = 0) = 1
3
.

When Xi = 0 the random walk moves in the vertical direction.
Now we compute the distribution of SN when N → ∞. Let ΦSN

(ξ) be the character-
istic function of the random variable SN and ΦX1(ξ) the one of X1. Then

ΦSN
(ξ) = E

(
eiξSN

) iid
=
(
E
(
eiξX1

))N
= (ΦX1(ξ))

N .

For the random variable X1 we have

ΦX1(ξ) = 1
3

(
eiξ + 1 + e−iξ

)
.

Therefore
µ + E(X1) = 0,

σ2
+ E (X1 − E(X1))

2 µ=0
= (−i)2 d2

dξ2 ΦX1(ξ)


ξ=0
= 2

3
.

For a 1D random walk with transition function p(x, y) = P(Xi = y − x) that satisfies
µ = 0 and σ2 < ∞, SN√

N
= 1√

N

∑N
i=1 Xi converges weakly8 to the Gaussian distribution

N (0, σ2) (with mean 0 and variance σ2). Therefore

P

(
SN√
N

≤ x

)
=

1√
4π/3

∫ x

−∞
e−

y2

4/3 dy as N → ∞.

Now we derive the property used in the proposition 12. By Markov-Chebyshev’s
inequality

P (|SN | ≥ δ) ≤ E (|SN |4)
δ4

.

In our case for N large enough E (|SN |4) ∼= 3N2σ2. Therefore taking δ = Nα with
α = 7/8 we obtain (for large N)

P
(
|SN | ≥ N 7/8

)
≤ 3σ2N−3/2.

Consequently

NP
(
|SN | ≥ N 7/8

)
≤ 3σ2

√
N

N→∞−→ 0.

When N >> 1, Nα >> 1 too and therefore

1. P(|Si| ≥ Nα) = 0 for 0 ≤ i < Nα and

2. P(|Si| ≥ Nα) ≤ 3σ2i2

N7/2 ≤ 3σ2N−3/2 for Nα ≤ i ≤ N .

Property 1. is verified.

8See [11] proposition 8 chapter 2, paragraph 6, page 64. The method is the same that we use in
the other cases.



RANDOM WALK ON A STRIP 10

3.2 The random walk on a 2-strip without immediate return

The end-to-end distribution is more difficult to compute in this case because the
displacement in the x-direction depends on the previous one. We prove that the
probability distribution of SN converges weakly to a Gaussian with variance 2N .
Once we have this result, the property verified in the previous case are true also in
this case (with a different value of σ2).
Let us define the following random variables9:

a(N, x) + P(SN = x|SN−1 = x − 1)

b(N, x) + P(SN = x|SN−1 = x + 1)

c(N, x) + P(SN = x|SN−1 = x)

Since the random walk cannot be in the same position after two steps, the relations
of these random variables for two consecutive steps are:

a(N, x) =
1

2
(a(N − 1, x − 1) + c(N − 1, x − 1)) ,

b(N, x) =
1

2
(b(N − 1, x + 1) + c(N − 1, x + 1)) ,

c(N, x) =
1

2
(a(N − 1, x) + b(N − 1, x)) .

We define the characteristic function of these random variables

Φρ(N, ξ) +

∑

x∈Z

ρ(N, x)eiξx for ρ = a, b, c

and the characteristic function of SN

ΦSN
(ξ) +

∑

x∈Z

P(SN = x)eiξx = Φa(N, ξ) + Φb(N, ξ) + Φc(N, ξ).

Finally we define

Φ(N, ξ) +




Φa(N, ξ)
Φb(N, ξ)
Φc(N, ξ)


 .

With these definitions we obtain a matrix relation between Φ(N, ξ) and Φ(N−1, ξ):

Φ(N, ξ) =
1

2




eiξ 0 eiξ

0 e−iξ e−iξ

1 1 0




︸ ︷︷ ︸
+T

Φ(N − 1, ξ)

We choose the initial condition to be Φ(0, ξ) = 1
3
(1, 1, 1), i.e. the initial position is

x = 0 and we have equal probability to go right, left or vertically. To obtain the

9
P(A|B) is the conditional probability of A knowing B.
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asymptotic probability distribution of SN we need to compute Φ(N, ξ) and then sum
over its three components. In order to compute Φ(N, ξ) = 1

2N TNΦ(0, ξ) we diagonalise
T , whose eigenvalues are

λ1 = −1,

λ2 = ν +
√

ν2 − 2,

λ3 = ν −
√

ν2 − 2,

with ν = eiξ+1+e−iξ

2
.

A calculation gives:

ΦSN
(ξ) =

λN
2 − λN

3

6 · 2N
· ν√

ν2 − 2
+

λN
2 + λN

3

2 · 2N

Now we want to study the characteristic function of SN when N goes to infinity.

For ξ near to 0, |λ2| > |λ3|, so that 1 ±
(

λ3

λ2

)N N→∞−→ 1, ν
3
√

ν2−2
= 1 + 8

3
ξ2 +

O(ξ4), λ2 = 2(1 − ξ2) + O(ξ4). Therefore E(SN) = 0 (by symmetry) and
E(S2

N) = (−i)2 d2

dξ2 ΦSN
(ξ)


ξ=0
= 2N .

Let us consider the rescaled random variable

AN +
SN√
2N

.

As N → ∞, for each fixed ξ, ξ√
2N

goes to zero and the terms (λ2/λ3)
N vanish.

Therefore

ΦAN
(ξ) = E

(
eiξAN

)
= E

(
e

i
ξSN√

2N

)
= ΦSN

(
ξ′ +

ξ√
2N

)

=
λ2 (ξ′)N

2N
·
(

1 + O
(

ξ2

N

))

=
1

2N
e

N ln λ2

“
ξ√
2N

”

·
(

1 + O
(

ξ2

N

))

=
1

2N
e

N

„
ln 2+ln

„
1− ξ2

2N
+O(ξ4/N2)

««

·
(

1 + O
(

ξ2

N

))

= e−
ξ2

2
+O(ξ4/N) ·

(
1 + O

(
ξ2

N

))
N→∞−→ e−

ξ2

2 .

e−ξ2/2 is a continuous function at ξ = 0 and corresponds to the characteristic func-
tion of the normal distribution. Therefore the Paul-Lévy theorem implies that the

sequence of random variables
{

AN = SN√
2N

}
N≥1

converges weakly (in law) to the nor-

mal distribution N (0, 1).
The probability distribution of SN converges to

P

(
SN√
N

≤ x

)
=

1√
2πσ2

∫ x

−∞
e−

y2

2σ2 dy with σ2 = 2
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as N goes to infinity.
Now that we have the probability distribution of SN , hypothesis 1. of proposition 12
holds (their verification is the same as in section 3.1). Then for the random walk on
a 2-strip with the constraint that cannot come back immediately we have γ̄ = 1.

3.3 Comparison of the end-to-end distance

We can also compare the end-to-end distance of the two random walks considered10.

Type of random walk
√

E(S2
N)

unconstrained random walk
√

2N
3

random walk without immediate return
√

2N

Table 1: The end-to-end distance on a 2-strip.

The effect of the constraint on the end-to-end distance is not negligible. In fact the
end-to-end distance increases by a factor

√
3 due to the constraint.

3.4 Complete asymptotic behavior of W (N)

In this section we give the expected behavior of W (N) using numerical values of
W (N)

Card(ΩN )
for N ∈ {15, . . . , 25}, for the 2-strip with the condition of avoiding an imme-

diate return. We do not give an analytical proof but an argument for this behavior.
The asymptotic guessed form of W (N) is W (N) = A 2N .
The expected number of visited points on the 2-strip behaves like C

√
N . Moreover

it returns to the origin a lot of times (C ′
√

N). Each of the C
√

N steps for which
the random walk visits a new site, it has at most two possible choices (“degrees of
freedom”), which do not affect the contact matrices (until this step). But the contact
matrices can be different due to later steps, and since it comes back frequently and it
has only two possibilities to do that in the y-direction, a lot of “degrees of freedom”
are destroyed for the typical random walks. Clearly there are some remaining degrees
of freedom, mostly of them at the “boundary of the walk”.
Let us define A(N) +

W (N)
Card(ΩN )

. Then 2 cases can occur:

1. there exists a K > 0 such that W (N) ≥ K2N for N large enough,

2. there does not exists a K > 0 such that W (N) ≥ K2N for N large enough.

10The asymptotic end-to-end distance is equal to the one for the x-component because E
(
(Sy

N )2
)
∈

[0,m2] becomes negligible with respect to the one of the x-component that grows linearly in N .

Moreover 1√
2πNσ2

∫∞
−∞ e−

x2

2πNσ2 x2 dx = Nσ2.
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In the second case lim infN→∞ A(N) = 0. In the 2-strip case without immediate
return, the data shows (see figures 3 and 4) that A(N) “increases”11 with increasing
N , therefore we expect that A(N) goes to a limit value A > 0 when N → ∞.
Therefore we are in the first case. Note that this behavior is the same as in the one
dimensional case12.
If the A(N) ∼ N−σ for a σ > 0, i.e. a power correction, then the limit of A(N) would
be 0.

Remark 13. In all the 2D cases13 for which we have numerical results (for small
values of N) the situation is different. In fact A(N) “decreases” when N increases14.
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0.0725

0.075

0.0775

0.08

0.0825

0.085

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
(N

)

1/N

Figure 3: A(N) as a function of 1

N
for random walk on a 2-strip with immediate return avoided.

3.5 The random walk on a m-strip

For the case of a m-strip we give an argument that γ̄ = 1.
First let us consider the unconstrained random walk on a m-strip. In this case P(Xi =
1) = P(Xi = −1) = 1

2
P(Xi = 0) = 1

4
when the random walk is not on the boundary

of the strip, i.e. the y-component is different from 0 and m − 1, in which cases we
have P(Xi = 1) = P(Xi = −1) = P(Xi = 0) = 1

3
. Then if we take the sequence of

the x-displacements, {Xi}N
i=1, the probability of having a non-zero x-displacement is

11In the sense that the global behavior increases, not that A(N) is increasing strictly speaking.
12The fact that a model on a strip is closer to a one dimensional model than a two dimensional is

of course not new (see [3], section 2.3).
13See table 4 in the appendix for the enumeration.
14See plots 10 to 14 in the appendices.
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Figure 4: A(N) as a function of N for random walk on a 2-strip with immediate return avoided.

less than in the 2-strip case. Then the probability distribution of SN cannot be more
spread out than in the 2-strip case. Therefore the probability distribution satisfies
the hypothesis of proposition 12.
In the case of a random walk on a m-strip for which coming-back immediately is
avoided, the same argument applies, and proposition 12 too15.

15In [10] the authors computed that the diffusion coefficient for random walks on strips of finite
width m is K = m

2m−1
for the unconstrained random walk (except for the boundary constraints),

but they did not compute the exact distribution of SN .
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4 Random walks on two dimensional lattices

We consider random walks on a 2-dimensional lattice. We have looked at the following
different cases:

1. the unconstrained random walk on Z
2,

2. the random walk on Z
2 that cannot come back immediately,

3. the random walk on Z
2 that turns 90 degrees at each step,

4. the unconstrained random walk on the honeycomb lattice,

5. the random walk on the honeycomb lattice that cannot come back immediately.

For all these cases we have some exact numerical result for small N . If we look at
the data16 for the 2D walks we could guess that the total number of contact matrices
W (N) grows less rapidly than Card(ΩN) in the sense that γ̄ < 1. Nevertheless we can
prove analytically that also in this case γ̄ = 1. This result is related to the asymptotic
behavior of the range (the number of different visited points) of the random walk. For
recurrent random walks the proposition holds also if the displacements are not nearest
neighbors. First we prove that γ̄ = 1, after that we verify that the used hypothesis
hold for the considered random walks. We also compute the end-to-end distance of
these different random walks and give two result on the degeneracy of the contact
matrices.

4.1 Growth factor

In what follows Xk, 1 ≤ k ≤ N denote the vector-valued displacement at the kth step,
and the total displacement is given by SN =

∑N
k=1 Xk and S0 = 0 (the starting point

is fixed at the origin).
Let G be the expected number of visits to the origin and F the probability of coming
back to the origin. A random walk is recurrent if G = ∞ (F = 1), otherwise the
random walk is transient.
For random walks with iid displacements (not necessarily nearest neighbors) we have
the following result.

Proposition 14 (Erdös, Dvoretzky 1951).
If a random walk is transient, then RN

N
converges in measure to 1

G
= 1 − F > 0 and,

if it is recurrent RN

N
converges in measure to 0 = 1 − F .

In other words, for a recurrent random walk we have:

lim
N→∞

P

(
RN

N
> ε

)
= 0 for all ε > 0. (7)

16See plots 8 and 9 in the appendix for two examples.
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Following the proof given by Spitzer17 we can prove the same proposition for non
iid random walk for which the probability of a displacement depends on the previous
one but not on previous occupancy of lattice points. We prove it for the recurrent
random walk for which we use it.

Proposition 15.
Let us consider a random walk as above.
Then limN→∞ P

(
RN

N
> ε
)

= 0 for all ε > 0 holds.

Proof.

The range of the N -random walk is given by

RN =
N∑

k=0

ϕk

where ϕ0(S0 = 0) = 1, ϕk(S1, . . . , Sk) =

{
1 if Sk 6= Sj,∀ 0 ≤ j ≤ k − 1,
0 otherwise.

Then by linearity

E(RN) = E

(
N∑

k=0

ϕk

)
=

N∑

k=0

E(ϕk).

For k = 0, E(ϕ0) = 1 and for k ≥ 1 we have:

E(ϕk) = P(ϕk = 1) · 1 + P(ϕk = 0) · 0
= P(Sk 6= Sk−1 ∩ . . . ∩ Sk 6= S1 ∩ Sk 6= 0)

= P(Sk − Sk−1 6= 0 ∩ . . . ∩ Sk 6= 0)

= P(Xk 6= 0 ∩ Xk + Xk−1 6= 0 ∩ . . . ∩ Xk + . . . + X1 6= 0).

If the Xk were iid we could replace directly Xk−j by X1+j ∀ j ∈ {0, . . . , k − 1}. Since
the Xk are not iid, we need to proceed in a slightly different way.
Let PN(A) denote the probability of the event A ∈ FN and similarly Pk(B) the
probability of the event B ∈ Fk. Let us define the one-to-one application in Ωk:

T : Ωk 7−→ Ωk

ω −→ ω′ = T (ω)

where ω = (0, S1(ω), . . . , Sk(ω)) and ω′
+ (0, S ′

1(ω), . . . , S ′
k(ω)) with

S ′
j(ω) + Xk(ω) + . . . + Xk−j+1(ω).

Since the event A = {Xk 6= 0∩Xk + Xk−1 6= 0∩ . . .∩Xk + . . . + X1 6= 0} is in Fk we
have:

E(ϕk) = PN(Xk 6= 0 ∩ Xk + Xk−1 6= 0 ∩ . . . ∩ Xk + . . . + X1 6= 0)

= Pk(Xk 6= 0 ∩ Xk + Xk−1 6= 0 ∩ . . . ∩ Xk + . . . + X1 6= 0)

= Pk(S
′
1, 6= 0 ∩ . . . ∩ S ′

k 6= 0)
T :1−1
= Pk(S1, 6= 0 ∩ . . . ∩ Sk 6= 0)

= PN(S1, 6= 0 ∩ . . . ∩ Sk 6= 0)

17See [11], chapter 1, paragraph 4, theorem 1, page 35.
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The probability of an event A ∈ Fk is proportional to the cardinality of the subset
of random walks that satisfies A, then because of the bijectivity of the application T
step four holds.

For the probability of never coming back to the origin we have the relation

P(Sj 6= 0,∀ j = 1, . . . , N) ≤ 1

GN(0, 0)

where GN(0, 0) is the expected number of visits to the origin after N steps18.
Then for a recurrent random walk

lim
N→∞

E(ϕN) = lim
N→∞

P(Si 6= 0,∀ i ∈ {1, . . . , N}) ≤ lim
N→∞

1

GN(0, 0)
=

1

G
= 0.

Therefore

lim
N→∞

E(RN)

N
= lim

N→∞

N∑

k=0

E(ϕk)

N
= 0.

We can now prove the proposition.

∀ ε > 0, P

(
RN

N
> ε

)
=

∑

k>Nε

P(RN = k) ≤
∑

k>Nε

P(RN = k)
k

Nε

≤ 1

Nε

∑

k≥0

kP(RN = k) =
1

ε

E(RN)

N
,

therefore

∀ ε > 0, lim
N→∞

P

(
RN

N
> ε

)
≤ 1

ε
lim

N→∞

E(RN)

N
= 0.

What we need to show now is first that the different random walks considered here
satisfy P(Sj 6= 0,∀ j ∈ N) = 0 (i.e. the random walk are recurrent). If this is true, we
can apply proposition 17 to these random walk.

Lemma 16.
Let ω be a N-random walk with a support equal to M and C(ω) its contact matrix.
Then

deg(C(ω)) ≤ DM

where D is the number of choices for each step such that the position at k + 1 does
not coincide with the position at k − 1, ω(k + 1) 6= ω(k − 1).

Proof.

Let us consider a fixed ω and its contact matrix C(ω). C(ω) has N + 1 − M columns
with an “1” in the upper triangular part, because we have N + 1 − M intersections.
Let us construct all random walks ω′ such that C(ω′) = C(ω). Consider its kth step,
then there are two possible cases:

18This follows from the proof of the proposition 4, chapter 1, paragraph 1, page 7 of [11].
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1. there exists a i < k such that (C(ω))ik = 1,

2. for all i < k (C(ω))ik = 0.

In the first case, the position of the kth step is fixed by the ith and therefore we have
only one choice for it.
In the second case, the kth step will occupy a place which was never occupied before.
Therefore we have at most D possibles choices19.
For a ω′ with a contact matrix C(ω′) = C(ω) there are M − 1 steps20 for which we are
in the second case and N + 1 − M steps for which we are in the first one.
Therefore there is at most DM−1 ≤ DM different ω′ satisfying C(ω′) = C(ω), i.e.

deg(C(ω)) ≤ DM .

In cases 1 and 2, D = 3, in cases 3,4,5, D = 2 and for a simple random walk on
Z

d is 2d − 1.

Proposition 17 (Growth factor).
Let us consider recurrent random walks such that each step depends only on the pre-
vious displacement. Then

lim
N→∞

P

(
RN

N
> ε

)
= 0 for all ε > 0

holds and

γ̄ = lim
N→∞

ln W (N)

ln Card(ΩN)
= 1.

Proof.

Proposition 15 proves the first part (the convergence in measure of RN/N to 0). Let
us prove the second part.
First we divide the set ΩN in two disjoint subsets: Ωδ

N ∪ (Ωδ
N)c where

Ωδ
N +

{
ω ∈ ΩN s.t.

RN(ω)

N
< δ

}

and

(Ωδ
N)c =

{
ω ∈ ΩN s.t.

RN(ω)

N
≥ δ

}
.

In what follows we consider random walks ω ∈ Ωδ
N because its cardinality goes to

Card(ΩN) when N goes to infinity, i.e.
Card(Ωδ

N )

Card(ΩN )
→ 1 as N → ∞.

19In fact there is only one exception if we do not fix the first step.
20Because the starting point is fixed at the origin.
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For all ω ∈ Ωδ
N , RN(ω) < Nδ, then the number of intersection is bigger than N(1−δ).

For each ω ∈ Ωδ
N , the corresponding matrix C(ω) is at most DNδ times degenerate

(by lemma 16). Therefore we have

deg(C(ω)) ≤ DNδ.

The total number of different matrices W (N) satisfies:

∀ δ > 0, W (N) ≥ W (N)


Ωδ
N
≥ Card(Ωδ

N)

DNδ
=

Card(ΩN) P(ω ∈ Ωδ
N)

DNδ
.

If we define τ + lim supN→∞ τN and τN +
ln Card(ΩN )

N
then

W (N) ≥ P

(
ω ∈ ΩN s.t.

RN(ω)

N
< δ

)
eN(τN−δ ln D).

Then

∀ δ > 0, 1 ≥ lim
N→∞

ln W (N)

ln Card(ΩN)

≥ lim
N→∞

N(τN − δ ln D) + ln

→1 as N→∞︷ ︸︸ ︷(
P

(
ω ∈ ΩN s.t.

RN(ω)

N
< δ

))

NτN

≥ 1 − δ
ln D

τ
.

Let us define ε = δ ln D
τ

> 0, then

∀ ε > 0, 1 ≥ lim
N→∞

ln W (N)

ln Card(ΩN)
≥ 1 − ε.

this implies that

lim
N→∞

ln W (N)

ln Card(ΩN)
= 1.
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4.2 Results on the degeneracy

Now we give some results on the degeneracy of contact matrices.

Proposition 18.
Let us consider recurrent random walks such that each step depends only on the pre-
vious displacement. If the random walk is recurrent then, for each µ > 0, we have

lim
N→∞

P
(
ω ∈ ΩN s.t. deg(C(ω)) ≥ eµN

)
= 0.

Proof.

Let D be as in propositon 17. Then

P
(
ω ∈ ΩN s.t. deg(ω) > DβN

)
= 1 − P

(
ω ∈ ΩN s.t. deg(ω) ≤ DβN

)
.

Moreover

P
(
ω ∈ ΩN s.t. deg(ω) ≤ DβN

)
≥ P (ω ∈ ΩN s.t. RN(ω) < βN)

because all N -random walks with a range less than βN are less degenerate than DβN .
Then for each µ > 0 we can choose β = µ

ln D
so that

P
(
ω ∈ ΩN s.t. deg(ω) > eµN

)
≤ 1 − P (ω ∈ ΩN s.t. RN(ω) < βN)

= 1 − P

(
ω ∈ ΩN s.t.

RN(ω)

N
< β

)

−→ 0 as N → ∞.

In the next part we consider simple random walks in two dimensions and we apply
a result of [12]. Let ω ∈ ΩN , then for each lattice site let us define the function

mN(x) = mN(x, ω) =

{
1 if x has not been visited by ω,
0 otherwise.

We consider the observables21 that can be written in the following form

MN = MN(ω) =
∑

A

µAMA,N(ω) where MA,N(ω) =
∑

x∈Z2

∏

a∈A

mN(x + a, ω)

where A is a finite subset of lattice vectors. MN(ω) is the number of times that the
pattern M appears in the support of the walk. Van Wijland, Caser and Hilhorst proved
in [12] that in two dimensions22 ∆MN = MN −E(MN) satisfies in the asymptotic limit

∆MN ' (k + 1)
A

ln 8N
E(MN)γ(N) (8)

21An observable is a pattern M composed by visited and unvisited sites.
22We will not write always explicitly that the observables are functions of ω.
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where γ(N) is a random variable23 with mean 0 and variance 1. A is a constant whose
value is 1.3034 . . . and k is an integer depending on the observable. The expectation
of such an observable MN is given by

E(MN) =
πN

ln 8N
m0 +

πN

(ln 8N)2
((C − 1)m0 + πm1) + O

(
N

(ln 8N)3

)
,

where C is the Euler’s constant (C = 0.577215 . . .) and m0, m1 are coefficients com-
puted in what follows.
Now we apply (8) to the following observable. Let us consider the pattern Q24 com-
posed of the following sets of visited sites Av, and unvisited sites Au:

Av(Q) = {(0, 0) , (−1, 0)}
and

Au(Q) = {(1, 0) , (0,−1) , (0, 1) , (−1, 1)}.

PSfrag replacements
x

y

z

Figure 5: The pattern Q. The visited places of Q are the black ones and the unvisited places the
white ones.

Then the number of times that Q appears in the support of a random walk is given
by

QN = QN(ω) =
∑

x∈Z2

mN(x + e1) · mN(x + e2) · mN(x − e2) ·

· mN(x + e2 − e1) · (1 − mN(x)) · (1 − mN(x − e1))

=
4∑

i=1

µAi
MAi

(N)

where e1 = (1, 0) and e2 = (0, 1). The sets Ai and the coefficients µAi
are given in the

next table. The coefficients ml are expressed as

ml = −
∑

A6=∅

µAgl
A,

23It is not the normal distribution, but is the Varadhan’s renormalized local time of self-
intersections (see [6]).

24The letter Q is used for this particular observable, the letter M for a general one.
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where gA are coefficients to be computed. For observables whose sets of visited and
unvisited points are both non empty, we have

∑
A6=∅

µA =
∑

A µA = 0, therefore in
our case we have m0 = 0. From the computations we find that m1 6= 0. The integer
k in equation (8) is the smallest one for which mk 6= 0, therefore in this case k = 1.
In table 2 we report also the coefficients gAi

that we have computed25.

i Ai µAi
gAi

1 {e1, e2,−e2, e2 − e1} −1 −2π(π3−15π2+68π−88)
π4−20π3+152π2−512π+576

2 {0, e1, e2,−e2, e2 − e1} 1 2π(π4−15π3+73π2−128π+64)
3π4−48π3+240π2−384π+128

3 {e1,−e1, e2,−e2, e2 − e1} 1 2π(π2−9π+16)
π3−8π2+32

4 {0, e1,−e1, e2,−e2, e2 − e1} −1 2π(π2−9π+16)
π3−8π2+32

Table 2: The sets Ai with the coefficients µAi
and gAi

.

From these values we obtain

m1 = −2(π−2)2(π−4)2(π2−10π+20)2π
(π4−20π3+152π2−512π+576)(3π4−48π3+240π2−384π+128)

= 2.78 · 10−3.

Proposition 19.
Let us consider the simple random walks on Z

2. Then there exists a ν > 0 such that

lim
N→∞

P

(
ω ∈ ΩN s.t. deg(C(ω)) ≥ e

νN
(ln N)2

)
= 1.

Proof.

Suppose that the pattern Q, up to a translation of ζ ∈ Z
2, exists in the support of a

random walk ω. Let us consider the following transformation:

Tζ : ΩN 7−→ ΩN

ω −→ Tζ(ω) + ω′ =

{
ω′

i = ωi if ωi 6= ζ,
ω′

i = ζ + (−1,−1) if ωi = ζ.

In other words we exchange the points ζ and ζ + (−1,−1). This application does not
change the contact matrix of the random walk, i.e. C(ω) = C(ω ′) because ζ +(−1,−1)
is connected only with ζ + (−1, 0).
Therefore if we prove that the probability of having at least λN times the pattern Q
in the support of a random walk goes to 1 as N goes to infinity, then the degeneracy
of the corresponding contact matrix is at least 2λN . In fact we can apply or not ap-
ply Tζ independently for each ζ such that Q appears in the support of ω (centered in ζ).

25For more details, see [12].
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Now we want an upper bound of P

(
QN < α µN

(ln N)2

)
for α ∈ (0, 1) and where

µ + m1π
2.

For each k > 0, there exists a N0 such that for N ≥ N0,

P

(
QN < α

µN

(ln N)2

)
≤ P

(
QN − E(QN) ≤ −kaQ

N

(ln 8N)3

)

with aQ = 2µA.
In fact, for N large enough, E(QN) = µN

(ln 8N)2
+O(N/(ln 8N)3) and therefore for each

α < 1, µN
(ln 8N)2

+O(N/(ln 8N)3)− kaQ
N

(ln 8N)3
≥ α µN

(ln N)2
. Therefore for each k > 0 and

N large enough

P

(
QN <

µN

(ln N)2

)
≤ P

(
QN − E(QN) ≤ −kaQ

N

(ln 8N)3

)

≤ P

(
|QN − E(QN)| ≥ kaQ

N

(ln 8N)3

)

≤ E (QN − E(QN))2

k2a2
Q

N2

(ln 8N)6

N→∞−→ 1

k2
.

Therefore for each α ∈ (0, 1) we have

∀ k > 0, lim
N→∞

P

(
QN < α

µN

(ln N)2

)
≤ 1

k2
.

This implies that for all α ∈ (0, 1),

lim
N→∞

P

(
QN ≥ α

µN

(ln N)2

)
= 1.

All the random walks with a number of pattern Q on their support more than α µN
(ln N)2

are more degenerate than e
α µN ln 2

(ln N)2 . Then for all choice of ν < µ ln 2 (because α ∈ (0, 1))
we have

lim
N→∞

P

(
ω ∈ ΩN s.t. deg(C(ω)) > e

νN
(ln N)2

)
= 1.

Proposition 20.
Let us consider simple random walks on Z

2. Then there exists a β > 0 such that

lim
N→∞

P

(
ω ∈ ΩN s.t. deg(C(ω)) ≥ e

βN
ln N

)
= 0.

Proof.

For this proof we consider the observable to be the support RN . It has m0 = 1 and
ml = 0 for l ≥ 1. Its expectation and variance are given (for large N) by

E(RN) =
πN

ln 8N
(1 + O (1/ ln N))
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and

E (RN − E(RN))2 =
A2π2N2

(ln 8N)2
.

Moreover by lemma 16

P

(
deg(C(ω)) ≥ eβ N

ln N

)
≤ P

(
RN ≥ β ln 3

N

ln N

)

and taking β > π
ln 3

and ε + β ln 3 − π > 0 we obtain

P

(
RN ≥ β ln 3

N

ln N

)
= P

(
RN − E(RN) ≥ ε

N

ln N
+ O

(
N

(ln N)2

))

≤ P

(
|RN − E(RN)| ≥ εN

ln N
+ O

(
N

(ln N)2

))

≤ E (RN − E(RN))2

ε2N2

(ln N)2
(1 + O(1/ ln N))

N→∞−→ lim
N→∞

A2π2N2/(ln 8N)4

ε2N2/(ln N)2
= lim

N→∞

A2π2

ε2(ln N)2
= 0.

Therefore for all β > π
ln 3

,

lim
N→∞

P

(
ω ∈ ΩN s.t. deg(C(ω)) ≥ e

βN
ln N

)
= 0.

4.3 End-to-end distance

In the next pages we compute the end-to-end distance for the five different types of
random walks mentioned at the beginning of this section.

4.3.1 Unconstrained random walk on Z
2

This is the easiest case for the computation of the end-to-end distance. Let us consider
an unconstrained random walk on a square lattice and let Xi, 1 ≤ i ≤ N be iid
displacements whose probabilities are:

P(X1 = (1, 0)) = P(X1 = (−1, 0)) = P(X1 = (0, 1)) = P(X1 = (0,−1)) =
1

4
.

Then the characteristic function of SN =
∑N

i=1 Xi is

ΦSN
(ξ + (ξ1, ξ2)) = E

(
eiξ·SN

) iid
=
(
E
(
eiξ·X1

))N
= (ΦX1(ξ))

N ,

where

ΦX1(ξ) =
1

4

(
eiξ1 + e−iξ1 + eiξ2 + e−iξ2

)
.
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The mean and the variance of X1 are respectively µ = 0 and σ2
X1

= 1. Moreover,

ΦX1(ξ1, ξ2) = 1 − 1
4
(ξ2

1 + ξ2
2) + O(ξ4

i ). Defining AN +
SN√
N/2

we obtain

ΦAN
(ξ) = ΦSN

(
ξ√
N/2

)
= eN ln (1− 1

2N
(ξ2

1+ξ2
2)+O(ξ4

i /N2)) N→∞−→ e−
ξ21+ξ22

2 .

Since the limit of the sequence ΦAN
(ξ) is continuous at (0, 0) and corresponds to

the characteristic function of the normal distribution, by the Paul-Lévy theorem,{
AN = SN√

N/2

}

N≥1

converges weakly to the two dimensional normal distribution

N (0, 1).
Therefore probability distribution of SN converges to

P (SN = (x, y)) =
1

2πNσ2
e−

x2+y2

2Nσ2 with σ2 =
1

2
(9)

as N goes to infinity.
The expected number of visits at the origin G is given by:

G =
∞∑

N=0

P(SN = (0, 0)) = ∞ because P(SN = (0, 0)) ∼ 1

N
as N → ∞,

and the probability of never coming back to the origin is 1/G = 1−F = 0. Therefore
proposition 17 holds that means γ̄ = 1.

4.3.2 Random walk on Z
2 that cannot come back immediately

In this case the end-to-end distribution is more difficult to compute because each step
depend on the previous one. For this case we prove that the probability distribu-
tion converges weakly to Gaussian with variance 2N . Once we have this result, the
property of recurrence computed in the previous case is also true in this case (with a
different value of σ2).
Let us define the following random variables:

a(N, x, y) + P(SN = (x, y)|SN−1 = (x − 1, y))

b(N, x, y) + P(SN = (x, y)|SN−1 = (x + 1, y))

c(N, x, y) + P(SN = (x, y)|SN−1 = (x, y − 1))

d(N, x, y) + P(SN = (x, y)|SN−1 = (x, y + 1))
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Since the random walks cannot be in the same position after two steps, the relations
of these random variables for two consecutive steps are:

a(N, x, y) =
1

3
(a(N − 1, x − 1, y) + c(N − 1, x − 1, y) + d(N − 1, x − 1, y))

b(N, x, y) =
1

3
(b(N − 1, x + 1, y) + c(N − 1, x + 1, y) + d(N − 1, x + 1, y))

c(N, x, y) =
1

3
(a(N − 1, x, y − 1) + b(N − 1, x, y − 1) + c(N − 1, x, y − 1))

d(N, x, y) =
1

3
(a(N − 1, x, y + 1) + b(N − 1, x, y + 1) + d(N − 1, x, y + 1))

We define the characteristic function of these random variables

Φρ(N, ξ1, ξ2) +

∑

(x,y)∈Z2

ρ(N, x, y)ei(ξ1x+ξ2y) for ρ = a, b, c, d

and the characteristic function of SN

ΦSN
(ξ1, ξ2) +

∑

(x,y)∈Z2

P(SN = x)ei(ξ1x+ξ2y)

= Φa(N, ξ1, ξ2) + Φb(N, ξ1, ξ2) + Φc(N, ξ1, ξ2) + Φd(N, ξ1, ξ2).

Finally we define:

Φ(N, ξ1, ξ2) +




Φa(N, ξ1, ξ2)
Φb(N, ξ1, ξ2)
Φc(N, ξ1, ξ2)
Φd(N, ξ1, ξ2)


 .

With these definitions we obtain a matrix relation between Φ(N, ξ1, ξ2) and Φ(N−
1, ξ1, ξ2):

Φ(N, ξ) =
1

3




eiξ1 0 eiξ1 eiξ1

0 e−iξ1 e−iξ1 e−iξ1

eiξ2 eiξ2 eiξ2 0
e−iξ2 e−iξ2 0 e−iξ2




︸ ︷︷ ︸
+T

Φ(N − 1, ξ1, ξ2).

We takes as initial condition Φ(0, ξ1, ξ2) = 1
4
(1, 1, 1, 1), i.e. the initial position is x = 0

and we have equal probability of going in each directions. To obtain the asymptotic
probability distribution of SN we need to compute Φ(N, ξ1, ξ2) and then sum over its
four components.
In order to compute Φ(N, ξ1, ξ2) = 1

3N TNΦ(0, ξ1, ξ2) we diagonalise T . The eigenvalues
of T are

λ1 = 1,

λ2 = −1,

λ3 = ν +
√

ν2 − 3,

λ4 = ν −
√

ν2 − 3,
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where ν = eiξ1+e−iξ1+eiξ2+e−iξ2

2
.

A calculation gives:

ΦSN
(ξ1, ξ2) =

λN
3 − λN

4

4 · 3N
· ν√

ν2 − 3
+

λN
3 + λN

4

2 · 3N
.

Now we want to study the characteristic function of SN when N goes to infinity.

For (ξ1, ξ2) near to (0, 0), |λ3| > |λ4|, so that 1 ±
(

λ4

λ3

)N N→∞−→ 1, ν
2
√

ν2−3
= 1 + 3

4
(ξ2

1 +

ξ2
2) + O(ξ4)26, λ3 = 3(1 − 1

2
(ξ2

1 + ξ2
2)) + O(ξ4). Then E(SN) = 0 (by symmetry) and

E(S2
N) = (−i)2

(
d2

dξ2
1

+ d2

dξ2
2

)
ΦSN

(ξ)


(ξ1,ξ2)=(0,0)
= 2N .

Let us consider the rescaled random variable

AN +
SN√
N

.

As N → ∞, for each fixed ξ = (ξ1, ξ2),
(ξ1,ξ2)√

N
goes to (0, 0) and the terms (λ3/λ4)

N

vanish. Therefore

ΦAN
(ξ) = E

(
eiξ·AN

)
= E

(
e

i
ξ·SN√

N

)
= ΦSN

(
ξ′ +

ξ√
N

)

=
λ3 (ξ′)N

3N
·
(

1 + O
(

ξ2
1

N
,
ξ2
2

N

))

=
1

3N
e

N ln λ3

“
ξ√
N

”

·
(

1 + O
(

ξ2
1

N
,
ξ2
2

N

))

=
1

3N
e

N

„
ln 3+ln

„
1− ξ21+ξ22

2N
+O(ξ4/N2)

««

·
(

1 + O
(

ξ2
1

N
,
ξ2
2

N

))

= e−
ξ21+ξ22

2
+O(ξ4/N) ·

(
1 + O

(
ξ2
1

N
,
ξ2
2

N

))
N→∞−→ e−

ξ21+ξ22
2

e−
ξ21+ξ22

2 is a continuous function at (ξ1, ξ2) = (0, 0), therefore the Paul-Lévy theorem

implies that the sequence of random variables
{

AN = SN√
N

}
N≥1

converges weakly to

the 2D normalized normal distribution N (0, 1).
Consequently the probability distribution of SN converges to

P(SN = (x, y)) =
1

2πNσ2
e−

x2+y2

2Nσ2 with σ2 = 1

as N goes to infinity.
By the same argument used for the unconstrained random walk (section 4.3.1) we
conclude that proposition 17 holds, i.e. γ̄ = 1.

26O(ξ4) is used for O(ξp
1
ξq
2
) for q + p = 4.
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4.3.3 Random walk on Z
2 that turns 90 degrees at each step

Let us consider the random walk on Z
2 which turns 90 degrees at each step. In

this case the displacements divide in the iid X2i, 1 ≤ i ≤ [N/2], for which P(X2i =
(0, 1)) = P(X2i = (0,−1)) = 1

2
, and X2i−1, 1 ≤ i ≤ [(N + 1)/2], for which P(X2i−1 =

(1, 0)) = P(X2i−1 = (−1, 0)) = 1
2
. All these displacements are independent. The

probability distribution is the convolution of the one of the odd steps with the one
of the even steps. If we define T e

N +
∑[N/2]

i=1 X2i and T o
N +

∑[(N+1)/2]
i=1 X2i−1 then

ΦSN
(ξ1, ξ2) = ΦT e

N
(ξ1, ξ2) · ΦT o

N
(ξ1, ξ2).

When N → ∞, ΦT o
N

(
ξ1√
N/2

)
= e−

ξ21
2 and ΦT e

N

(
ξ2√
N/2

)
= e−

ξ22
2 , then the probability

distribution of SN√
N/2

converges to N (0, 1).

Consequently the probability distribution of SN converges to

P(SN = (x, y)) =
1

2πNσ2
e−

x2+y2

2Nσ2 with σ2 =
1

2
(10)

as N goes to infinity and proposition 17 holds and γ̄ = 1.

4.3.4 Unconstrained random walk on honeycomb lattice

Let us consider the unconstrained random walk on honeycomb lattice such that the
distance between two nearest neighbors is equal to one.

PSfrag replacements

y

x

α
β

Figure 6: The honeycomb lattice. The sublattice considered is the emphasized one.

The honeycomb lattice is an union of two triangular sublattices. At each step the
random walk passes from a sublattice to the other one, so that after two steps the
random walk returns on the initial sublattice. We consider the sublattice containing
the origin and we compute the end-to-end distribution of a 2N -random walk.
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The sublattice considered is
{(

0
0

)
+ αM1 + βM2 where M1,M2 ∈ Z and α =

(
3/2√
3/2

)
, β =

(
0√
3

)}

Let {Yk}N
k=1 be iid the random variable of the double steps. Then the position after

2N steps is given by the random variable S2N +
∑N

k=1 Yk.
The probability distribution of Yk is given by:

P(Yk = α) = P(Yk = −α) = P(Yk = β) = P(Yk = −β)

= P(Yk = α − β) = P(Yk = β − α) =
1

9
,

P(Yk = 0) =
1

3
,

and the characteristic function of S2N is given by

ΦS2N
(ξ = (ξ1, ξ2)) = E

(
eiS2N ·ξ)

iid
=

(
E
(
eiY1·ξ

))N

= (ΦY1(ξ))
N

where ΦY1(ξ) = 1
9

(
3 + eiα·ξ + e−iα·ξ + eiβ·ξ + e−iβ·ξ + ei(α−β)·ξ + e−i(α−β)·ξ)

By symmetry E(Y1) = 0 and
√

E(Y 2
1 ) =

√
2. Let us define A2N +

S2N√
2N

. Then

ΦA2N
(ξ) =

(
ΦY1

(
ξ√
2N

+ ξ′
))N

and by the same method used for the previous cases:

lim
N→∞

ΦA2N
(ξ) = e−

ξ21+ξ22
2

and the probability distribution of SN converges to

P(SN = (x, y)) =
1

2πNσ2
e−

x2+y2

2Nσ2 with σ2 =
1

2
.

4.3.5 Random walk on a honeycomb lattice that cannot come back im-
mediately

To compute the end-to-end distance we use the same method as above, but this time
there is a little complication due to the lattice geometry.
Like for the random walk on honeycomb lattice without constraints, we consider the
sublattice of the even steps. Each of its points are given by the couple of integer
(M1,M2) in the basis of {α, β}. Let us consider the position after N double displace-
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ments of the random walk, noted ZN . We define the following random variables:

a1(N,M1,M2) + P(ZN = (M1,M2)|ZN−1 = (M1 − 1,M2))

a2(N,M1,M2) + P(ZN = (M1,M2)|ZN−1 = (M1,M2 − 1))

b1(N,M1,M2) + P(ZN = (M1,M2)|ZN−1 = (M1 + 1,M2 − 1))

b2(N,M1,M2) + P(ZN = (M1,M2)|ZN−1 = (M1 + 1,M2))

c1(N,M1,M2) + P(ZN = (M1,M2)|ZN−1 = (M1,M2 + 1))

c2(N,M1,M2) + P(ZN = (M1,M2)|ZN−1 = (M1 − 1,M2 + 1))

Since the random walks cannot be in the same position after two steps, the relations
of these random variables for two consecutive steps are (the dots replace the argument
of the previous term):

a1(N,M1,M2) =
1

4
(a1(N − 1,M1 − 1,M2) + a2(. . .) + c1(. . .) + c2(. . .))

a2(N,M1,M2) =
1

4
(a1(N − 1,M1,M2 − 1) + a2(. . .) + b1(. . .) + b2(. . .))

b1(N,M1,M2) =
1

4
(a1(N − 1,M1 + 1,M2 − 1) + a2(. . .) + b1(. . .) + b2(. . .))

b2(N,M1,M2) =
1

4
(b1(N − 1,M1 + 1,M2) + b2(. . .) + c1(. . .) + c2(. . .))

c1(N,M1,M2) =
1

4
(b1(N − 1,M1,M2 + 1) + b2(. . .) + c1(. . .) + c2(. . .))

c2(N,M1,M2) =
1

4
(a1(N − 1,M1 − 1,M2 + 1) + a2(. . .) + c1(. . .) + c2(. . .))

We define the characteristic function of these random variables

Φρ(N, ζ1, ζ2) +

∑

(M1,M2)∈Z2

ρ(N,M1,M2)e
i(ζ1M1+ζ2M2) for ρ = a1, a2, b1, b2, c1, c2

and the characteristic function of ZN

ΦZN
(ζ1, ζ2) +

∑

(M1,M2)∈Z2

P(ZN = (M1,M2))e
i(ζ1M1+ζ2M2)

=
∑

ρ=a1,...,c2

Φρ(N, ζ1, ζ2).

Defining a vector with the characteristic function of a1, . . . , c2 we can find a matrix
relation between the steps N − 1 and N . Then we diagonalise the matrix, we take
its N th power and we sum over its six component. One more time we take as initial
condition that the initial position is x = 0 and we have equal probability of going in
each directions.
But what we want is the distribution of SN , the actual position after N steps. First
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remark that P(S2N) = (x, y)) = P(ZN = (M1 = 2
3
x,M2 = y√

3
− x

3
)) and therefore we

have

ΦS2N
(ξ1, ξ2) +

∑

(x,y)∈ lattice

P(S2N = (x, y))ei(xξ1+yξ2)

= ΦZN
(ζ1, ζ2) with

{
ζ1 = 3

2
ξ1 +

√
3

2
ξ2

ζ2 =
√

3ξ2

Finally from the computations we obtain that the probability distribution of SN con-
verges to

P(SN = (x, y)) =
1

2πNσ2
e−

x2+y2

2Nσ2 with σ2 =
3

4
as N goes to infinity.
By the same argument used for the unconstrained random walk (section 4.3.1) we
conclude that proposition 17 holds, i.e. γ̄ = 1.

4.3.6 Comparison of the end-to-end distance

All the end-to-end distributions we have computed converge to a two dimensional
normal distribution with mean 0, N (0, Nσ2), with a different value of σ2. Therefore
the end-to-end distance27 of these random walks are

√
2Nσ2. In the following table

we sum up them.

Type of random walk
√

E(S2
N)

Simple random walk on Z
2

√
N

Random walk without immediate return
√

2N

Random walk that turns 90◦ at each step
√

N

Random walk on honeycomb lattice without immediate return
√

3N
2

Unconstrained random walk on honeycomb lattice
√

N

Table 3: The different values of the end-to-end distance

We see that the effect of the constraint of avoiding the immediate return is impor-
tant. In fact the end-to-end distance increases of a factor

√
2 for the square lattice

and
√

3/2 for the honeycomb lattice. It is interesting to notice that for unconstrained
random walk on a honeycomb and on a square lattice the end-to-end distance is
asymptotically the same. This is no more true if we consider the random walks that
cannot come back immediately. In this case the end-to-end distance for the square
lattice is bigger than the one of the honeycomb lattice.

27 1

2πNσ2

∫∞
−∞

∫∞
−∞ e−

x2+y2

2πNσ2 (x2 + y2) dx dy = 2Nσ2.



RANDOM WALK IN d ≥ 3 32

5 Simple random walks in d ≥ 3

5.1 Growth factor for random walk on Z
d

In this section we prove that, due to the left heavy tail of the probability distribution
of the support, we have γ̄ = 1 in all dimension (for i.i.d. random walks). Nevertheless
the number of different contact matrices can be very far to the total number of walks.
In fact γ̄ = 1 implies only that the correction to the total number of walks is less
important than e−qN for each q > 0.

Proposition 21 (Growth factor). Let us consider simple random walks on Z
d.

Then

γ̄ = lim
N→∞

ln W (N)

N ln 2d
= 1.

Proof.

Let Ωδ
N + {ω ∈ ΩN s.t. RN(ω) ≤ Nδ}. Then using lemma 16, page 17,

W (N) ≥ W (N)|Ωδ
N
≥ Card(ΩN)P(RN ≤ Nδ)

(2d − 1)Nδ
.

Therefore

1 ≥ lim
N→∞

ln W (N)

ln Card(ΩN)
≥ lim

N→∞

ln P(RN ≤ Nδ) + N ln 2d − Nδ ln (2d − 1)

N ln 2d

= 1 − δ
ln (2d − 1)

ln 2d

because28

lim
N→∞

1

N
ln P(RN ≤ Nδ) = 0 for all δ > 0.

Let us define δ′ + δ ln (2d−1)
ln 2d

. Then

∀ δ′ > 0, 1 ≥ lim
N→∞

ln W (N)

ln Card(ΩN)
≥ 1 − δ′

that implies

lim
N→∞

ln W (N)

ln Card(ΩN)
= 1.

28See introduction of [2].
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In the next proposition we give a lower bound for the first correction on γN .

Proposition 22. Let γN +
ln W (N)

lnCard(ΩN )
, then there exists a C > 0 such that

γN ≥ 1 − C

N2/(d+2)
.

Proof.

When N goes to infinity, P(RN = X) ∼ e
−a N

X2/d for d ≥ 2 and in the scaling limit
X → ∞ and X

N
→ 0 (see [9]).

Therefore for α ∈ (0, 1),

P(RN = [Nα]) ∼ e−aN1−2α/d

.

But for an ω with RN = [Nα], deg(C(ω)) ≤ (2d − 1)Nα
(see lemma 16). Therefore

W (N) ≥ (2d)N
P(RN = [Nα])

(2d − 1)Nα

that implies, for large N ,
1 ≥ γN ≥ 1 − σ(N,α)

where

σ(N,α) =
Nα ln (2d − 1)

N ln 2d
+

aN−2α/d

ln 2d
.

The correction will be smaller if σ(N,α) is smaller, then let us search the α ∈ (0, 1)
such that σ(N,α) is the smallest when N → ∞. This is the case for α such that the
two terms of σ(N,α) are of the same order, i.e. α − 1 = −2α/d. Then α = d

d+2
(and

α − 1 = − 2
d+2

). Taking C = ln (2d−1)+a
ln 2d

we end the proof.

This proposition implies that for N large we have (up to smaller corrections),

W (N)

Card(ΩN)
≥ e−CNd/(d+2) ln 2d.

We believe that this lower bound is closer to the actual value for high dimensions
than for low dimension, because the upper bound for the degnerancy of a contact
matrix will be closer to the actual behaviour in these dimension. In fact for low di-
mension the constraints given by the matrix will eliminate some “degrees of freedom”,
more in low than in high dimensions.
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5.2 Degeneracy for random walk on Z
3

The random walks start from the origin 0. Consider a random walk ω ∈ ΩN , then for
each lattice site let us define the function

mN(x) = mN(x, ω) =

{
1 if x has not been visited by ω,
0 otherwise.

Let us consider the observables that can be written in the following form

MN = MN(ω) =
∑

A

µAMA,N(ω) where MA,N(ω) =
∑

x∈Z3

∏

a∈A

mN(x + a, ω)

where A is a finite subset of lattice vectors. Van Wijland and Hilhorst proved in [13]
that in three dimensions ∆MN = MN − E(MN) satifies, in the asymptotic limit29,

∆MN ' aM

√
N ln Nζ(N) (11)

where ζ(N) is a random variable with normal distribution N (0, 1) and aM is a con-
stant.
More precisely they proved that the expectation of MN behaves as:

E(MN) =





m1N +
√

54
π3 m2

√
N + O(1) (d = 3)

m1N + 4
π2 m2 ln N + O(1) (d = 4)

m1N + O(1) (d ≥ 5)

(12)

and the variance has the form:

E((∆MN)2) =

{
27
2π2 m

2
2N ln N + cMN + o(N) (d = 3)

CMN + o(N) (d ≥ 4)
(13)

In the article they also explain how to compute the coefficients m1, m2, cM , CM . We
apply this results to a particular observable in order to prove that the probability
of having a random walk whose contact matrix is exponentially degenerate goes to
1 as N goes to infinity. Nevertheless we prove that γ̄ = 1 in dimensions d ≥ 3.
This is due to the left tail of the distribution of the support of the random walk not
decreasing rapidly enough (the right tail instead decreases exponentially in N , see [2]).

The considered observable is a particular pattern P in which there is a local trans-
formation that changes a random walk into another but does not change the corre-
sponding contact matrix. Therefore if the probability of finding this pattern at least
a λN times, λ > 0, goes to 1 (asymptotically), then using the transformation for each
pattern independently we can prove that most of the different contact matrices are
exponentially degenerate in N (see proposition 23).
Now let us define the pattern P . It consists of a set of visited points Av and a set of
unvisited points Au as follows:

29This does not imply that the tails of all observables decreases in the same way, in fact this is not
true, see for example [14].
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• Visited points:
Av(P ) = {(0, 0, 0) , (−1, 0, 0)}

• Unvisited points:

Au(P ) =

{
(1, 0, 0) , (0, 1, 0) , (0,−1, 0)
(0, 0, 1) , (0, 0,−1) , (−1, 1, 0)

}

PSfrag replacements

x

y

z

Figure 7: The pattern P .

The number PN of times that P appears in the support of the N -random walk is
given by:

PN = PN(ω) =
∑

x∈Z3

∏

a∈Au

mN(x + a)
∏

b∈Av

(1 − mN(x + b)).

Explicitly we have

PN =
∑

x∈Z3

mN(x + e1) · mN(x + e2) · mN(x − e2) · mN(x + e3) ·

· mN(x − e3) · mN(x + e2 − e1) · (1 − mN(x)) · (1 − mN(x − e1))

where e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1).
We computed30 the coefficients m1, m2 and aP that are:

m1 = 2.5 · 10−3 , m2 = 9.9 · 10−3 and aP = 1.2 · 10−2.

Proposition 23.
Let us consider a simple random walk on Z

3. Then there exists a ν > 0 such that

lim
N→∞

P
(
ω ∈ ΩN s.t. deg(C(ω)) ≥ eνN

)
= 1.

30We used numerical values from [8].
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Proof.

Suppose that a pattern P , up to a translation of ζ ∈ Z
3, exists in the support of a

random walk ω. Let us consider the following transformation:

Sζ : ΩN 7−→ ΩN

ω −→ Sζ(ω) + ω′ =

{
ω′

i = ωi if ωi 6= ζ,
ω′

i = ζ + (−1,−1, 0) if ωi = ζ.

In other words we exchange the points ζ and ζ + (−1,−1, 0). This transformation
does not change the contact matrix of the random walk, i.e. C(ω) = C(ω ′) because
ζ + (−1,−1, 0) is connected only with ζ + (−1, 0, 0).
Therefore if we prove that the probability of having at least λN times the pattern P
in the support of a random walk goes to 1 as N goes to infinity, then the degeneracy
of the corresponding contact matrices is at least 2λN . In fact we can apply or not ap-
ply Tζ independently for each ζ such that P appears in the support of ω (centered in ζ).

We want an upper bound of P(PN < αm1N) for α ∈ (0, 1).
For each k > 0, there exists a N0 such that for N ≥ N0,

P(PN < αm1N) ≤ P(PN − E(PN) ≤ −kaP

√
N ln N)).

In fact, for N large enough, E(PN) = m1N + O(
√

N) and therefore for each α < 1,
m1N +O(

√
N)−kaP

√
N ln N ≥ αm1N . Therefore for each k > 0 and N large enough

P(PN < αm1N) ≤ P(PN − E(PN) ≤ −kaP

√
N ln N)

≤ P(|PN − E(PN)| ≥ kaP

√
N ln N)

≤ E (PN − E(PN))2

k2a2
P N ln N

N→∞−→ 1

k2
.

Consequently for each α ∈ (0, 1) we have

∀ k > 0, lim
N→∞

P(PN < αm1N) ≤ 1

k2
.

This implies that for all α ∈ (0, 1),

lim
N→∞

P(PN ≥ αm1N) = 1.

All random walks with a number of pattern P in their support more than αm1N are
more degenerate than eαm1N ln 2. Then for all choice of ν < m1 ln 2 (because α ∈ (0, 1))
we have

lim
N→∞

P
(
ω ∈ ΩN s.t. deg(C(ω)) > eνN

)
= 1.

Remark 24. Since in dimension d ≥ 4 the variance goes like N and the expectation
of each observables goes like N too, we expect that this result is true also in dimension
greater than three. In order to prove that one should for example prove that m1 is not
zero also for higher dimension for a pattern similar to P .



BOND-SELF-AVOIDING AND SELF-AVOIDING WALKS 37

6 The self-avoiding and bond-self-avoiding walks

on Z
d

In this section we prove that for random walks with the constraint to occupy at most
one time each bond, γ̄ < 1.

Definition 25.
A bond-self-avoiding random walk is a random walk that passes at most one time
through each bond.
A self-avoiding random walk is a random walk that occupies at most one time each
lattice point.

We consider self-avoiding walks (SAW) and bond-self-avoiding walks (BAW) on
the d-dimensional lattice Z

d.
Let us make some considerations on the BAW. Each lattice point is connected to 2d
nearest neighbors and therefore each lattice point can never be occupied more than
d times, with only one exception, the case for which the first and the last step of the
random walk are at the same position and all the 2d bonds are occupied. But in this
case the random walk cannot continue (it is trapped). Therefore the properties of
BAW will be closer to the ones of SAW than the ones of simple random walks.

Definition 26 (Contact matrices for SAW).
Let ω = (0, ω(1), . . . , ω(N)) ∈ ΩN be a SAW of length N . We define the application
C

C : ΩN 7−→ M(N, R)

ω −→ Ci,j(ω)

where Ci,j(ω) =

{
1 if ‖ω(i) − ω(j)‖∞ = 1 and |i − j| > 1,
0 otherwise.

The contact matrix of ω is its image by C. The degeneracy of a contact matrix is the
number of random walks corresponding to that contact matrix.

In order to prove that γ̄ < 1, we prove a theorem for BAW, the corresponding of
Kesten Pattern Theorem for SAW (see [5] and [7]). Let χN be the number of BAW
(or SAW) of length N and W (N) the number of contact matrices of BAW (or SAW).
A consequence of the theorem is that

lim sup
N→∞

ln W (N)

N
< ln β where β + lim

N→∞
(χN)1/N .

The proof of the theorem is split in some lemmas. First we introduce some notations
and definitions, then we prove the lemmas which conduce to the theorem. After that
we apply it in order to prove31 that the growth factor is less than 1.

31In [4] this property was consistent to their numerical result for small length of the walks but
there was no proof. It was proven by Kesten in a personal mail with Lebowitz.
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6.1 Definitions and notations

Definition 27. The concatenation of two BAW ω1 and ω2 of length N1 and N2

respectively is the walk of length N1 + N2, not necessarily BAW, defined as follows:

ω(k) =

{
ω1(k) for k = 0, . . . , N1

ω1(N1) + ω2(k − N1) − ω2(0) for k = N1 + 1, . . . , N1 + N2

Since the walk issue from the concatenation of ω1 and ω2 is not necessarily a BAW
walk, we have

χN1+N2 ≤ χN1χN2

and therefore
{ln χN}N≥1

is a subadditive sequence. Consequently the following limit exists,

lim
N→∞

ln χN

N
= inf

N≥1

ln χN

N
+ ln β. (14)

Let b > 1 be fixed for all what follows.

Definition 28.

1. Cube D: D + {x ∈ Z
d s.t. ci ≤ X(i) ≤ ci + b, 1 ≤ i ≤ d} for some c =

(c1, . . . , cd) ∈ Z
d.

2. Cube D1: D1
+ {x ∈ Z

d s.t. ci − 1 ≤ X(i) ≤ ci + b + 1, 1 ≤ i ≤ d} for the same
c ∈ Z

d of the cube D.

3. Cube D2: D2
+ {x ∈ Z

d s.t. ci − 2 ≤ X(i) ≤ ci + b + 2, 1 ≤ i ≤ d} for the same
c ∈ Z

d of the cube D.

4. Let ω be a BAW and c = (c1, . . . , cd) ∈ Z
d. Then we define the cube D(r, c):

D(r, c) + {x ∈ Z
d s.t. ci ≤ X(i) − X

(i)
r (ω) ≤ ci + b, 1 ≤ i ≤ d}.

5. Let D be the boundary of the cube D (similarly for all other cubes).

6. Pattern P : P + {Xi(P ), 1 ≤ i ≤ k} is a BAW with X0(P ) = 0.

Definition 29. Let ωN be a BAW of length N .

1. P occurs at the rth step of ωN if Xr+j(ω
N) − Xr(ω

N) = Xj(P ) for all j =
0, . . . , k.

2. If there exists a cube D with X0(P ) = 0 and Xk(P ) two of its vertices and such
that Xi(P ) ∈ D1 for all i = 0, . . . , k, then we say that (P,D) occurs at the rth

step ωN if

(a) P occurs at the rth step of ωN ,
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(b) ωN does not occupies any other points of D (except for
ωN(k), k = r, . . . , r + k).

3. E occurs at the rth step of ωN is for some c ∈ Z
d with −b ≤ ci ≤ 0, i = 1, . . . , d,

all bonds of the cube D(r, c) are filled by ωN (similarly for E1 with the cube
D1(r, c)).

4. Ek occurs at the rth step of ωN if for some c ∈ Z
d, ωN passes at least k steps

in D2(r, c).

5. Let F be an event like E or Ek. Then we say that F occurs at the rth step of
ωN from its (r − n1)

th step through its (r + n1)
th step if F occurs at the nth

1

step of ω̃N , which is the restriction of ωN to the steps in [r− n1, r + n1] (clearly
r − n1 < 0 or r + n1 > N has to be replaced by 0 and N respectively). In this
case we say that F (n1) occurs at the rth step of ωN .

Definition 30. The following definitions are used in lemma 34 and in the theorem 35.

1. SN,k + {ωN s.t. E and Ek do not occur in ωN}.

2. k0 is the largest integer such that lim infN→∞

(
Card(SN,k)

χN

)1/N

< 1.

3. Ẽ occurs if E or Ek0 occur.

4. TN is the set of all ωN such that E and Ek0+1 do not occur and Ek0(n1) occurs
at least a3N times.

5. D?(r, c) + D2(r, c) ∪ {Xi(ω
N), r − n1 ≤ i ≤ r + n1}.

6. WN is the set of all ωN for which (P,D) occurs at most a6N times and E1(n3)
occurs at least a7N times.

Definition 31.

1. χN(j, P ) is the number of ωN such that P occurs at most at j steps.

2. χN(j, (P,D)) is the number of ωN such that (P,D) occurs at most at j steps.

3. χN(j, F (n1)) is the number of ωN such that F (n1) occurs at most at j steps.

6.2 Lemmas and theorem

Lemma 32.

1. There exists a walk ω of length k̃ = k̃(b, d) such that 0 = X0(ω) and Xek(ω) are
vertices of D and ω fills exactly D in the following sense:

(a) each bond of D are occupied by ω,
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(b) Xi(ω) ∈ D1 for all 1 ≤ i ≤ k̃.

2. For all Y, Z ∈ D
2

(Y 6= Z in dimension 1), there exists a ω1 of length k1 ≤
d(b + 5)d−1(b + 4) such that X0(ω1) = Y , Xk1(ω1) = Z, Xi(ω1) ∈ D2 for all
0 ≤ i ≤ k1 and such that ω1 contains ω.

Proof.

1. In dimension d = 1 it is evident because there is only a possibility for the walk
from 0 to b. Then k̃(b, 1) = b.
Assume the first part of the lemma to be proven for dimension d − 1. Then,
let D(0)

+ {X(1) = 0, 0 ≤ X(i) ≤ b, 2 ≤ i ≤ d} be a (d − 1)-cube filled from
0 to P0 = (0, P (2), . . . , P (d)), P (i) = 0 or b. Connect it by 3-step walk (outside
of D) to P1 = (1, P (2), . . . , P (d)). Then fill the (d − 1)-cube D(1)

+ {X(1) =
1, 0 ≤ X(i) ≤ b, 2 ≤ i ≤ d} similarly to what done for D(0). We can repeat
this procedure on (b − 1) more (d − 1)-cubes connecting them always with a
3-step. At this point it remains to occupy the bonds in D in the direction 1.
Let Q = (Q(1), . . . , Q(d)), Q(i) = 0 or b the last visited point until now. We can
fill the lasts (d+1)d−1b bounds of D moving along the direction 1 and each time
we have finished a line, we pass to another one with a 3-walk. In this way we
fill all the bonds of D with a walk ω which is contained in D1 of length k̃(b, d).

k̃(b, d) is given by: k̃(b, d) = (b + 1)k̃(b, d− 1) + (b + 1)d−1(b + 3) + 3(b− 1) and

k̃(b, 1) = b.

2. Let us take Y (1) = −2 w.l.o.g.. From Y to (−2, 0, . . . , 0) there exists a path on

D
2

of length k2 − 2. Then with a 2-walk we connect it to the origin (0, . . . , 0).
After that we fill D as shown in the first part of the lemma (without occupying
the bond (−1, 0, . . . , 0) to (0, . . . , 0)). Then from the last point of ω (of length

k̃(b, d)) we can connect it to D̃2 with a 2-walk and then to Z with a (k3 − 2)-

walk on D
2

that does not intersect the first one (it is always possible to do that).

In this way we have constructed the desired ω1 of length k1 = k2 + k3 + k̃ ≤
d(b + 5)d−1(b + 4).

Lemma 33. If

lim inf
N→∞

(
χN(0, F )

χN

)1/N

< 1

then there exists a a1 > 0 and a n1 ∈ N
? such that

lim sup
N→∞

(
χN(a1N,F (n1)

χN

)1/N

< 1.
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Proof.

First, remark that since no path of length greater than N can occurs before the N th

step, we have
χN(0, F (N)) = χN(0, F ).

By hypothesis lim infN→∞ χN(0, F )1/N < β, therefore there exists a ε > 0 and a
n1 ∈ N

? such that

χn1(0, F ) = χn1(0, F (n1)) ≤ βn1(1 − ε)n1 .

But since χ
1/N
N ↘ β when N → ∞, then for n1 large enough we have

(χn1)
1/n1 ≤ β(1 + ε) and therefore

χn1 ≤ βn1(1 + ε)n1 .

Let us consider a BAW ωsn1 . It consists on a concatenation of s n1-walks. For F (n1)
that occurs at most a2N times is ωsn1 , F (n1) occurs in at most a2N of its pieces
and does not occurs in the others ones (at least s(1 − a2)). There exists at most
χn1(0, F (n1)) choices for a ωn1 where F (n1) does not occurs, and at most χn1 choices
for the others ones. Moreover, if F (n1) occurs in j (out of s) different pieces of length
n1, there are

(
s
j

)
ways to choose the j pieces. Consequently we obtain:

χsn1(a2s, F (n1)) ≤
a2s∑

j=0

(
s

j

)
(χn1)

jn1 (χn1(0, F (n1)))
(s−j)n1

≤ βsn1

a2s∑

j=0

(
s

j

)
(1 + ε)jn1(1 − ε)(s−j)n1

+ βsn1Λ(a2, s)

Let us study lims→∞ (Λ(a2, s))
1/sn1 . For small a2 > 0, the term with j = a2s is the

bigger, therefore

Λ(a2, s) =

a2s∑

j=0

(
s

j

)(
1 + ε

1 − ε

)jn1

(1 − ε)sn1

≤ (a2s + 1)
s!

(a2s)!((1 − a2)s)!

(
1 + ε

1 − ε

)a2sn1

(1 − ε)sn1

= Power(s)
(
aa2

2 (1 − a2)
1−a2

)s
(

1 + ε

1 − ε

)a2sn1

(1 − ε)sn1 .

From this follows
lim
s→∞

(Λ(a2, s))
1/sn1 ≤ (1 − ε)Φ(a2)

where Φ(a2) = e
1

n1
(a2 ln a2+(1−a2) ln (a−a2)) (1+ε

1−ε

)a2 . Since lima2→0 Φ(a2) = 1 and
(1 − ε) < 1 we obtain that for a2 > 0 but small enough,

lim
s→∞

(Λ(a2, s))
1/sn1 < 1.
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And from this follows immediately

lim sup
s→∞

(χsn1(a2s, F (n1)))
1/sn1 < β.

For sn1 ≤ N ≤ (s + 1)n1, χN(a2s, F (n1)) ≤ (2d)n1χsn1(a2s, F (n1)). Let us take
a1 = a2

2n1
. Then

lim sup
N→∞

(χN(a1N,F (n1)))
1/N ≤ lim sup

N→∞
(χN(a2[N/n1], F (n1)))

1/N

≤ lim sup
s→∞

(2d)n1/n1s (χsn1(a2s, F (n1)))
1/n1s < β.

Finally we have the desired result:

lim sup
N→∞

(
χN(a1N,F (n1))

χN

)1/N

< 1

for a1 > 0 small enough.

Lemma 34.

lim inf
N→∞

(
χN(0, E)

χN

)1/N

< 1.

Proof.

We prove it by contradiction. Assume for instance that the proposition is false,

i.e. lim infN→∞

(
χN (0,E)

χN

)1/N

= 1. First we prove that k0 exists. Since Xr(ω) ∈
D(r, c) then Xr−2(ω), Xr−1(ω), Xr+1(ω) and Xr+2(ω) are in D2(r, c) if they exists.
Therefore at least 3 points are in D2(r, c) (the random walk considered is longer than
3 steps). Therefore E3 occurs always and Card(SN,3) = 0. Consequently k0 ≥ 3. Let

k̂ + d(b + 5)d. On the other hand, if E does not occurs, then Ek̂ neither and then the

initial assumption would give lim infN→∞

(
Card(SN,k̂)

χN

)1/N

= 1. Therefore k0 ≤ k̂ − 1.

k0 cannot be greater because a BAW cannot be into D2(r, c) more than k̂. Therefore
there exists a k0 such that

lim inf
N→∞

(
Card(SN,k0)

χN

)1/N

< 1 and lim inf
N→∞

(
Card(SN,k)

χN

)1/N

= 1, k > k0.

Since Ẽ occurs if E or Ek0 occurs, we have χN(0, Ẽ) = Card(SN,k0) and

therefore lim infN→∞

(
χN (0, eE)

χN

)1/N

< 1. Using lemma 33, there exists a a3 > 0

and a n1 ∈ N
? such that lim supN→∞

(
χN (a3N, eE(n1))

χN

)1/N

< 1. Let us con-

sider the set TN . TN is equal to the difference of SN,k0+1 and the set
{ωN s.t. E and Ek0+1 do not occur and Ek0(n1) occurs at most a3N times},
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which is included in the set {ωN s.t. Ek0(n1) or E occur at most a3N times}.
Therefore

Card(TN) ≥ Card(SN,k0+1) − χN(a3N, Ẽ(n1)).

The previous considerations imply that

lim
N→∞

(
Card(TN)

χN

)1/N

= 1.

We will prove that this last result conducts to a contradiction and therefore that the
initial assumption is false and consequently the lemma is true.
Let us take a ωN ∈ TN and let us now consider the D?(r, c). Each D?(r, c) is contained

in a cube, of edgelength 2q with q = b+2+n1, noted D̂(r) that is centered in Xr(ω
N).

D̂(r) intersect a similar cube D̂(s) for at most d(4b + 4n1 + 0)d values of s (because
we need ‖Xr(ω

N) − Xs(ω
N)‖∞ ≤ 2q + 1). Moreover X0(ω

N) or XN(ωN) belong to a
D?(r, c) for at most 2(2q + 1)dd values of r. Then for N large enough, there are at
least a3N

d(8b+8n1)d + a4N values of r such that the D?(r, c) are pairwise disjoints, because
a3N

d(8b+8n1)d ≤ a3N
d(4b+4n1+9)d − 2d(2b + 2n1 + 5)d.

Assume to have chosen a4N of such values of r and consider one of them r0 with the
cube D0 + D(r0, c). Since ωN ∈ TN , ωN occupoes k0 times a place in D2

0 from its
(r0 − n1)

th to its (r0 + n1)
th steps, but does not occupy all bonds of D0 and does not

occupy a site in D2
0 before its (r0 − n1)

th step or after its (r0 + n1)
th step.

Let Xr′(ω
N) be the first point of ωN in D

2

0 and Xr′′(ω
N) the last one. Then by

lemma 32 there exists a BAW ω1 of length k1 ≤ n2 + b(b+5)d−1(b+4) that goes from
Xr′(ω

N) to Xr′′(ω
N) with Xi(ω1) ∈ D2

0 for 0 ≤ i ≤ k1 and such that ω1 occupies all
bonds of D0.
Now we make some changes in ωN . Let us replace the piece of ωN from Xr′(ω

N)
to Xr′′(ω

N) with ω1. With this operation we obtain a BAW of length no more than
N + n2. If we make a similar replacement for a5N values of r out of the a4N choiced,
we obtain at least

(
a4N
a5N

)
Card(TN) BAW of length at most N(1+a5n2). The next step

is to find an upper bound on the number of times that a BAW ω̄ constructed by the
above procedure can be obtained.
In ω̄ E occurs at least a5N times. In fact it can occurs more than a5N times because
the changes in a cube can create E in another cube that intersect the first one. But
the number of s such that D2(s, cs) can intersect a D2(r, c) in which we have changed

something are at most M̃ = b(4b + 9)da5N . Given a ω̄ and a s such that E occurs at
the sth step of ω̄, we have no more than (b+1)d(b+5)2d choices for the corresponding c̄,
the first and the last intersection of ω̄ with D2(s, c̄) noted X̄ ′ and X̄ ′′ respectively. For
the replaced piece from X̄ ′ to X̄ ′′ we have at most H +

∑n1

k=0 χk possibilities (because
we know only that the length is at most 2n1). Therefore each ω̄ can be obtained

at most in τ a5N different ways, where τ +
(
(b + 1)d(b + 5)2dH

)d(4b+9)d

. Consequently,
since the obtained ω̄ are of length less or equal to N(1+a5n2), we obtain the following



BOND-SELF-AVOIDING AND SELF-AVOIDING WALKS 44

relation (
a4N

a5N

)
Card(TN)τ−a5N ≤

N(1+a5n2)∑

k=0

χk.

Taking the N th root and the limit N → ∞ we have:

lim
N→∞

(
a4N

a5N

)1/N

τ−a5 ≤ βa5n2 .

(
a4N
a5N

)1/N
= (Power(N))1/N a

a4
4

a
a5
5 (a4−a5)a4−a5

and for a5 > 0 small enough,

limN→∞
(

a4N
a5N

)1/N
= ea5(1+ln a4−lna5)+O(a2

5). Let δ + 1+ln a4−ln τ−n2 ln β. This implies

1 ≥
limN→∞

(
a4N
a5N

)1/N

τa5βa5n2
= ea5(δ−ln a5)+O(a2

5). (15)

But lima5→0e
a5(δ−ln a5)+O(a2

5) = 1 and lima5→0
d

da5
ea5(δ−ln a5)+O(a2

5) = +∞, therefore for
a5 > 0 but small enough, this contradicts equation (15).

Theorem 35.
Let P be a BAW (or SAW) such that there exists a cube D which has X0(P ) = 0 and
Xk(P ) two of its vertices and contains P . Then

lim sup
N→∞

(
χN(a6N, (P,D))

χN

)1/N

< 1 for some a6 > 0.

Proof.

The strategy of the proof is similar to the one used for proving lemma 34. We assume
the theorem to be false and we obtain a contradiction. Assume therefore the theorem
to be false. Then

∀ a6 > 0, lim sup
N→∞

(
χN(a6N, (P,D))

χN

)1/N

< 1.

Let us consider the set WN . It is equal to the difference the sets

{ωN such that (P,D) occurs at most a6N times}

and
{ωN s.t. (P,D) occurs at most a6N times and

E1(n3) occurs less than a7N times}.
The last one is included in {ωN s.t. E1(n3) occurs less than a7N times}. Therefore

Card(WN) ≥ χN(a6N, (P,D)) − χN(a7N,E1(n3)).
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Using lemma 34 (with b + 1 instead of b), there exists a a7 > 0 and a n3 ∈ N
? such

that

lim sup
N→∞

(
χN(a7N,E1(n3))

χN

)1/N

< 1,

and with the initial assumption we obtain

lim sup
N→∞

(
Card(WN)

χN

)1/N

= 1.

For each ωN ∈ WN , there exists at least a8N +
a7N

d(8b+8n1)d values of r such that ωN

fills the bonds of D1(r, c) from its (r − n3)
th to its (r + n3)

th step and such that the
corresponding D?(r, c) are pairwise disjoints and such that the end points of ωN are
not in these cubes.
Assume to have chosen a8N such values of r and consider one of them r0 (with the
corresponding cube D1(r0, c) denoted by D1

0). Let Xr′(ω
N) be the first point of ωN

in D1
0 and Xr′′(ω

N) the last one. Then there exists a ω1 from Xr′(ω
N) to Xr′′(ω

N)
such that Xi(ω1) are contained in D1

0 and such that (P,D0) occurs. The construction

of such a ω1 is simple. Let us take32 X
(1)
r′ (ωN) = −2 w.l.o.g.. Connect this point to

(−1, 0, . . . , 0) remaining on D
1

0. Then connect is to 0 = X0(P ) in one step. After

that we construct the walk P in D0. Finally we connect it to D
1

0 with one step and
remaining on it we arrive to Xr′′(ω

N). Doing this transformation in a9N places out
of the a8N , we obtain

(
a8N
a9N

)
Card(WN) walks of length no more than N .

To finish the proof we need to find an upper bound on the number of ways that a walk
ω̄ can be obtained by this procedure. In ω̄ there are at most a6N + a8Nd(4b + p)d2n3

occurrences of (P,D). In fact we make no more than a8N changes, each change can
create new occurrences of (P,D) only on the cubes that intersect D1(r, c) (no more
than d(4b + 9)d) and each changed step can create an occurrence of (P,D) in two
ways, adding a point or leaving a point in a cube D. But given a ω̄ and a s such that
E1(n3) occurs at the sth step of ω̄, we have no more than (b + 1)d(b + 3)2d choices for
c̄, the first and the last step of ωN that is in D1(s, c̄). The length of the piece of ωN

that was replaced is at most 2n3 steps long. Therefore if we define H ′
+
∑2n3

k=0 χk,

σ +
(
(b + 1)d(b + 3)2dH ′)2n3d(4b+9)d

and a′
6 +

a6

2n3d(4b+9)d , we obtain

(
a8N

a9N

)
Card(WN)σ−(a8+a′

6)N ≤
N∑

k=0

χk.

Taking the N th root and the limit N → ∞ we have

lim
N→∞

(
a8N

a9N

)1/N

≤ σa6+a9βa9 .

But this for a′
6 > 0 and a9 > 0 small enough is false, therefore we have obtained the

searched contraddiction.

32For this construction all points are noted up to a translation of Xr0
(ωN ) + c.
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6.3 Growth factor for SAW and BAW

Proposition 36 (Growth factor).
For the BAW and SAW the growth factor of the number of contact matrices is strictly
less than 1, i.e.

lim sup
N→∞

ln W (N)

ln χN

< 1.

Proof.

Let us take b > 2 and consider a BAW (or SAW) of length k + 2d constructed as
follows. The firsts d steps of P connect the points (0, . . . , 0) and (1, . . . , 1). The
following k steps connect the points (1, . . . , 1) and (b − 1, . . . , b − 1) with a BAS
(or SAW) remaining always in D \ D. The last d steps of P connect the points
(b − 1, . . . , b − 1) and (b, . . . , b).
Let us divide the set ΩN into a sum of two disjoint parts: ΩN = Ωa

N ∪ (Ωa
N)c where

Ωa
N + {ω ∈ ΩN s.t. (P,D) occurs at most aN times } and (Ωa

N)c its complementaire
set. From theorem 35 follows that

∃ ζ > 0 s.t. P(ω ∈ Ωa
N) ≤ e−ζN .

Let us consider a ω ∈ (Ωa
N)c. Then (P,D) occurs at least aN times. Let D′ be

the bigger cube enclosed by D that does not intersect D. Consider an occurrence of
(P,D) in the piece of P between its tth and its (t + k + 2d)th steps. We apply an
axis rotation of 2π

d
degrees to the cube D′, where the axis is its diagonal of direction

(1, . . . , 1). This transformation does not change the contact matrix, and we can apply
it l times obtaining each time a different BAW (or SAW). For the chosen ω we can
make this transformation in at least aN different places independently, therefore the
corresponding contact matrix is at least laN times degenerate.
Now we have the desired upper bound for the total number of contact matrices:

W (N) ≤ P(ω ∈ Ωa
N)χN + P(ω ∈ (Ωa

N)c)
χN

laN

≤
(
e−ζN + e−Na ln l

)
χN .

If we define αM + max{ζ, a ln l} > 0 and αm + min{ζ, a ln l} > 0, then we have

lim sup
N→∞

ln W (N)

ln χN

≤ lim
N→∞

ln
(
e−αmN

(
1 + e−

αM
αm

N
))

+ ln χN

ln χN

= 1 − αm

ln β
< 1.
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7 Random walks with intersection penalty

In this section we consider random walks to which we assign a non uniform probability,
for example to give a penalty to intersections.
One way to generalize the number of contact matrices is to count it giving a weight
to the different walks. For unweighted walks the probability is given by

P(ω) =
1

Card(ΩN)
for all ω ∈ ΩN ,

and

A(N) +
W (N)

Card(ΩN)
=
∑

ω∈ΩN

P(ω)

deg C(ω)
= E

(
1

deg C

)
.

Therefore a generalized number of contact matrices can be given by the above expres-
sion but with a probability33

P̃(ω) non necessarily uniformly distributed on ΩN .
In what follows we consider random walks on Z

d and we define η + limN→∞ η(N) +

limN→∞
ln A(N)
N ln 2d

. Note that
η = 0 ⇐⇒ γ̄ = 1.

Let us look at two extreme cases:

1. Simple random walk on Z
d. In this case we proved that η = 0 because we showed

that γ̄ = 1.

2. Self-avoiding walks on Z
d. This is the limit case when the penalty we give to

each intersection goes to infinity. In this case there is only one contact matrix
according to definition given in section 1. Its degeneracy is deg C(ω) = χN , where
χN is the number of SAW of length N . Therefore we have34 η = − ln µ

ln 2d
< 0.

The obvious question that arises is, how about other cases? We could for example
consider random walks with a drift, i.e. with an asymmetric probability distribution
of displacements, or we can give a weight to each walk as a function of the intersections
(and consequently a function of the contact matrices), as in the following examples:

1. P̃(ω) = e−β Tr(C2(ω))

Q(β)
, Domb-Joyce model (see [3]),

2. P̃(ω) = e−βIN (ω)

Q(β)
where IN + N + 1 − RN is the number of intersections.

The question we answer in this section is the following: for β > 0 but small enough
does limN→∞ ηβ(N) = 0 or limN→∞ ηβ(N) < 0?
In what follows we consider random walks with a probability weight given by

P̃(ω) =
e−βIN (ω)

Q(β)
,

33In this section P̃(ω) is the weighted probability of ω, Ẽ(. . .) the expectation under P̃ and P(ω) is
used for the unweighted probability of ω.

34The asymptotic number of SAW is given by χN = ANγ−1µN .
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where Q(β) is the normalization.
First note that

∑

ω∈ΩN

P̃(ω)

deg C(ω)
=

N∑

I=0

∑

ω∈ΩN
IN (ω)=I

P̃(ω)

deg C(ω)
=

N∑

I=0

∑

C(ω) s.t.
IN (ω)=I

P̃(ω).

For the mean degeneracy we have

〈deg C(ω)〉


IN (ω)=I
+

∑

C(ω) s.t.
IN (ω)=I

deg C(ω)

Card({C(ω) s.t. IN(ω) = I})

=
Card({ω s.t. IN(ω) = I})

Card({C(ω) s.t. IN(ω) = I}) .

Therefore

A(N) =
N∑

I=0

e−βI

Qβ(N)
Card({C(ω) s.t. IN(ω) = I})

where

Qβ(N) =
N∑

I=0

e−βI
P(IN = I) Card(ΩN).

Consequently we obtain

A(N) =

∑N
I=0 e−βI

P(IN = I)

(
〈deg C(ω)〉


IN (ω)=I

)−1

∑N
I=0 e−βIP(IN = I)

N>>1
=

∫ 1

0
e−βNk

P
(

RN

N
= 1 − k

)(
〈deg C(ω)〉


IN (ω)

N
=k

)−1

dk

∫ 1

0
e−βNkP

(
RN

N
= 1 − k

)
dk

+
Pβ(N)

Qβ(N)
.

Hypothesis 37. We suppose that

d(k) + lim
N→∞

1

N
ln 〈deg C(ω)〉


IN (ω)

N
=k

exists and ∃ γ > 0 s.t. d(1 − k) > 0 ∀ k ∈ [π − γ, π + γ].

Note that for all k ∈ [0, 1] we have 0 ≤ d(k) ≤ ln 2d.
In particular d(0) = ln µSAW > 0 and d(1) = 0. Let us consider a simple random walk
on Z

d, d ≥ 3. Then we have the following properties:
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1. If π + limN→∞ E
(

RN

N

)
then limN→∞ P

(RN

N
− π

 > α
)

= 0,∀α > 0. For
simple random walks in dimensions d ≥ 3, π > 0.

2. limN→∞ − 1
N

ln P
(

RN

N
≥ x

)
= ζ(x) with ζ(x) > 0 if x > π (see [5]),

3. limN→∞ − 1
N

ln P
(

RN

N
≤ x

)
= 0 for all x35.

We want an upper bound for ηβ, therefore we need an upper bound for Aβ(N).
This implies that we need to compute an upper bound for Pβ(N) and a lower bound
for Qβ(N).
In what follows all corrections to leadings terms in Pβ(N) and Qβ(N) will be immedi-
ately eliminated (because at the end we have to take the logarithm of these quantities,
divide by N and take the limit N → ∞).

Lemma 38 (Upper bound for Pβ(N)).
For β > 0 but small enough,

Pβ(N) ≤ e−β(1−π+γ)N .

Proof.

For computing this bound we split the integrals on [0, 1] into the integral on [0, π−γ),
[π − γ, π + γ] and (π + γ, 1] where γ > 0 is the one of hypothesis 37.
Let d̃ + min[π−γ≤k≤π+γ] d(k).

Pβ(N) =

∫ 1

0

e−βNke−Nd(k)
P

(
RN

N
= 1 − k

)
dk

= e−βN

∫ 1

0

eβNke−Nd(1−k)
P

(
RN

N
= k

)
dk

= e−βN

{∫ π−γ

0

(· · · ) dk +

∫ π+γ

π−γ

(· · · ) dk +

∫ 1

π+γ

(· · · ) dk

}

≤ e−βN

{
eβN(π−γ)

P

(
RN

N
< π − γ

)

+ eβN(π+γ)e−Nd̃
P

(
RN

N
∈ [π − γ, π + γ]

)

+ eβN
P

(
RN

N
> π + γ

)}

= e−βN
{

eβN(π−γ) + eβN(π+γ)e−Nd̃

+ eβNe−ζ(π+γ)N
}

Let us consider β small, more precisely β ≤ βP
c + min

{
d̃
2γ

, ζ(π+γ)
1−π+γ

}
. By hypothesis 37

we have d̃ > 0. Then max{β(π−γ), β(π +γ)− d̃, β− ζ(π +γ)} = β(π−γ). Therefore

35It seems that limN→∞ − 1

N(d−2)/d ln P
(

RN

N
≤ x

)
= ξ(x), see [2].
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for β > 0 but small enough,

Pβ(N) ≤ e−β(1−π+γ)N .

Lemma 39 (Lower bound for Qβ(N)).
For β > 0 but small enough,

Qβ(N) ≥ e−β(1−π−α)N .

Proof.

In order to obtain this bound we split the integral on [0, 1] into the integral on [0, π−α),
[π − α, π + α] and (π + α, 1] (where α > 0).

Qβ(N) =

∫ 1

0

e−βNk
P

(
RN

N
= 1 − k

)
dk

= e−βN

∫ 1

0

eβNk
P

(
RN

N
= k

)
dk

= e−βN

{∫ π−α

0

(· · · ) dk +

∫ π+α

π−α

(· · · ) dk +

∫ 1

π+α

(· · · ) dk

}

≥ e−βN

{
P

(
RN

N
< π − α

)

+ eβN(π−α)
P

(
RN

N
∈ [π − α, π + α]

)

+ eβN(π+α)
P

(
RN

N
> π + α

)}

= e−βN
{
1 + eβN(π−α) + eβN(π+α)e−ζ(π+α)N

}

Let us consider β small, more precisely β ≤ βQ
c +

ζ(π+α)
2α

.
Then max{0, β(π − α), β(π + α) − ζ(π + α)} = β(π − α). Therefore for β > 0 but
small enough,

Qβ(N) ≥ e−β(1−π+α)N .
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Proposition 40.
For β > 0 small enough we have

ηβ < 0.

Proof.

Using the two bounds obtained in lemmas 38 and 39 we obtain

Aβ(N) ≤ e−βN(γ−α).

Therefore choosing γ > α > 0 we have, for β > 0 and β ≤ βc + min{βQ
c , βP

c }

ηβ = −β(γ − α)

ln 2d
< 0.

We proved that under hypothesis 37 for random walks with a penalty of e−β to each
intersection, when β > 0 small, we have ηβ < 0 in three or higher dimensions (β = 0
corresponds to simple random walk with uniform probability distribution). Therefore
for the generalized number of matrices we have an asymptotic growth factor γ̄ < 1.
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8 Summary

In this work we mainly study the exponential growth factor of the number of different
contact matrices. We find for random walk on a strip that the number of contact
matrices has the same behavior of the one-dimensional case. In two dimensions,
because of the recurrence of the random walks, the growth factor is equal to one.
Surprisingly also in dimension three or higher, for simple random walks on a cubic
lattice, we have the same result (γ̄ = 1). For bond-self-avoiding walks it is no more
the case. In fact γ̄ < 1 (the same holds for self-avoiding walks with a different
definition of contact matrices). Finally we consider random walks with a penalty of
e−β for each intersection. For weighted number of contact matrices we obtain, under
an assumption, γ̄ < 1 also when β > 0 is very small.
We also have some additional results on the degeneracy of contact matrices in two
and three dimensions and on the end-to-end distance in two dimensions.
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9 Appendix: tables and graphics

N W (N) − 1 A(N) = W (N)
2N

5 1 6.25 · 10−2

6 3 6.25 · 10−2

7 7 6.25 · 10−2

8 15 6.25 · 10−2

9 32 6.45 · 10−2

10 66 6.54 · 10−2

11 143 7.03 · 10−2

12 291 7.13 · 10−2

13 603 7.37 · 10−2

14 1′203 7.35 · 10−2

15 2′457 7.50 · 10−2

16 4′865 7.42 · 10−2

17 9′906 7.56 · 10−2

18 19′616 7.48 · 10−2

19 39′813 7.59 · 10−2

20 78′970 7.53 · 10−2

21 160′092 7.63 · 10−2

22 317′954 7.58 · 10−2

23 643′712 7.67 · 10−2

24 1′279′887 7.63 · 10−2

∞ ∞ 8 · 10−2

Table 4: W (N) and A(N) for a random walk on a 2-strip without immediate return. The last one
is the expected value of limN→∞ A(N).
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Figure 8: γ(N) as a function of 1/N for random walk on Z
2 that cannot come back immediately.
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Figure 9: γ(N) as a function of 1/N for random walk on honeycomb lattice that cannot return
immediately.
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Figure 10: A(N) as a function of 1/N for random walk on Z
2 that turns 90 degrees at each step.
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Figure 11: A(N) as a function of 1/N for random walk on Z
2 with immediate return avoided.
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Figure 12: A(N) as a function of 1/N for simple random walk on Z
2.
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Figure 13: A(N) as a function of 1/N for random walk on honeycomb lattice with immediate return
avoided.
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Figure 14: A(N) as a function of 1/N for random walk on honeycomb lattice without constraints.
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