## **Functional Analysis**

WS 2015/2016 Prof. Dr. M. Disertori P. Gladbach; R. Schubert



## Problem Sheet 11.

Due 29.1.2016.

**Problem 1.** (Dual space of  $L^{\infty}$ ) (7+3 Points)

- a) Let X be a normed space. Prove that if X' is separable then so is X. Hint: Take a countable dense subset  $\{T_n\}$  of X'. Observe that for every  $T_n$  there is  $x_n \in X$  with  $||x_n|| \le 1$  and  $|T_n(x_n)| \ge \frac{1}{2} ||T_n||$ . Set  $Y := span\{x_n\}$  and prove by contradiction that  $\overline{Y} = X$ . Since  $L^1(U)$  is separable and  $L^{\infty}(U)$  is not, this implies that  $L^{\infty}(U)' \ne L^1(U)$ .
- b) Prove that a Banach space X is reflexive if and only if its dual X' is reflexive. Remember that a Banach space X is reflexive if the natural embedding  $J_X: X \to X''$  into its double dual is surjective.

## **Problem 2.** (Positive functionals) (10 Points)

Let  $U \subset \mathbb{R}^n$  and let X be a closed subspace of  $B(U,\mathbb{R})$  with the property that  $f \in X$  implies  $|f| \in X$ . Let T be a linear Funktional on X and for all  $f \in X$ 

$$|T(f)| \le ||f|| = \sup_{x \in U} |f(x)|$$
 and  $f \ge 0 \implies T(f) \ge 0$ .

Show that there is a linear functional  $\bar{T}$  on  $B(U,\mathbb{R})$  such that  $\bar{T}=T$  on X and such that for all  $f\in B(U,R)$ 

$$\left|\bar{T}(f)\right| \leq \|f\| = \sup_{x \in U} |f(x)| \text{ and } f \geq 0 \implies \bar{T}(f) \geq 0.$$

Hint: Consider  $f_+ = \max(f, 0)$  and introduce an appropriate sublinear function p.

## **Problem 3.** (Convex separation) (5+5+5+5 Points)

Let X be a real Banach space. Let  $U \subset X$  be open, convex, with  $0 \in U$ .

- a) Define  $p(x) = \inf\{t > 0 : x/t \in U\}$ . Show that  $p: X \to \mathbb{R}$  is subadditive, with  $x \in U$  if and only if p(x) < 1.
- b) Let  $x \in X \setminus U$ . Show that there is  $F \in X'$  with  $F(x) \ge 1$  and F < 1 in U. Draw a picture.
- c) Let  $A, B \subset X$  be two nonempty convex disjoint subsets, A open. Let  $x_0 \in A$ ,  $y_0 \in B$ , and define  $V = (A x_0) (B y_0) = \{(x x_0) (y y_0) : x \in A, y \in B\}$ . Show that V is open, convex, with  $0 \in V$ ,  $y_0 x_0 \in X \setminus V$ .
- d) Show that there exist  $F \in X'$  and  $\lambda \in \mathbb{R}$  with  $F < \lambda$  in A and  $F \ge \lambda$  in B. Draw a picture. Can we pick  $\lambda = 1$ ?