Functional Analysis

WS 2015/2016 Prof. Dr. M. Disertori P. Gladbach; R. Schubert

Problem Sheet 1.

Due 6.11.2015.

universität **bonn**

Problem 1. (Base of a topology) (4+3+3 Points)

Let X be a set. Consider a family of subsets $\mathcal{B} \subseteq 2^X$ such that

- (i) If $U, V \in \mathcal{B}$ then for every $x \in U \cap V$ there is some $W \in \mathcal{B}$ such that $x \in W$ and $W \subseteq U \cap V$.
- (ii) $\bigcup_{U \in \mathcal{B}} U = X$.

Define $\mathcal{T}_{\mathcal{B}} = \{\bigcup_{U \in \mathcal{C}} U : \mathcal{C} \subseteq \mathcal{B}\}$. Let \mathcal{T} be a topology over X. Any $\mathcal{B} \subseteq 2^X$ satisfying (i) and (ii) with $\mathcal{T}_{\mathcal{B}} = \mathcal{T}$ is called a base of \mathcal{T} .

- a) Show that $\mathcal{T}_{\mathcal{B}}$ is indeed the coarsest topology containing \mathcal{B} .
- b) Find at least two bases of the standard topology on \mathbb{R}^n .
- c) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces. Find at least two bases of the product topology on $X \times Y$.

Problem 2. (Cocountable topology) (3+1+4+2 Points)

We define

 $\mathcal{T} \coloneqq \{ U \subset \mathbb{R} : U = \emptyset \text{ or } \mathbb{R} \setminus U \text{ is countable} \}.$

Here we call a set A countable if A is either finite or if there is a bijective map $j : \mathbb{N} \to A$.

- a) Prove that \mathcal{T} is a topology on \mathbb{R} .
- b) Show that $(\mathbb{R}, \mathcal{T})$ is not a Hausdorff space.
- c) Prove that a sequence $x : \mathbb{N} \to \mathbb{R}$ converges to $x^* \in \mathbb{R}$ with respect to \mathcal{T} if and only if there is $k_0 \in \mathbb{N}$ such that $x_k = x^*$ for all $k \ge k_0$. Hence limits are unique even though $(\mathbb{R}, \mathcal{T})$ is not Hausdorff.
- d) Show that there exists $A \subset \mathbb{R}$ which is (with respect to \mathcal{T}) sequentially closed but not closed.

Problem 3. (Generating new metrics) (5+2+3 Points)

- a) Consider a concave nondecreasing function ψ ∈ C²([0,∞)) with ψ(0) = 0 and ψ(x) > 0 for x > 0. Show that for any metric d the function ψ ∘ d is a metric, too. *Hint: Show first that* ψ' is a nonincreasing function.
- b) Define $d : \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ by

$$d(x,y) = \sum_{k=1}^{\infty} 2^{-k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}$$

- (i) Prove that d is a metric on the space of sequences $\mathbb{R}^{\mathbb{N}}$.
- (ii) Let $(x^j)_{j\in\mathbb{N}}, x^j = (x^j_k)_{k\in\mathbb{N}}$, be a sequence in $\mathbb{R}^{\mathbb{N}}$. Prove that $d(x^j, 0) \to 0$ if and only if $\lim_{j\to\infty} x^j_k = 0$ for all $k \in \mathbb{N}$.

Problem 4. (Pointwise convergence) (4+4+2 Points)

Let $X = \mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}\}$. For $f \in X, x \in \mathbb{R}$, and $\delta > 0$ let $B_{f,x,\delta} = \{g \in X : |g(x) - f(x)| < \delta\}$.

- a) Find an explicit base (see Problem 1) for the coarsest topology \mathcal{T} over X containing all the $B_{f,x,\delta}$.
- b) Show that a sequence $(f_j)_{j \in \mathbb{N}}$ converges to f in \mathcal{T} if and only if it converges pointwise.
- c) Show that \mathcal{T} is Hausdorff.