Übungen zu Analysis I

Wintersemester 2019/2020

Prof. Dr. S. Conti — Dr. P. Gladbach — Dr. T. Simon

Übungsblatt 15

Der Zettel wird nicht mehr korrigiert und fließt nicht mehr in die Zulassung ein. Der Stoff ist dennoch klausurrelevant!

Aufgabe 1 (Uneigentliche Integrale I, 12* Punkte):

Entscheiden Sie, ob folgende Integrale bzw. Reihen konvergieren:

(a)
$$\int_0^1 \ln x dx.$$

(b)
$$\int_{2}^{\infty} \frac{1}{x \ln x} dx.$$

(b)
$$\int_{2}^{\infty} \frac{1}{x \ln x} dx$$
. (c) $\int_{2}^{\infty} \frac{1}{x (\ln x)^{2}} dx$.

(d)
$$\int_{1}^{\infty} x^{\alpha} dx$$
 mit $\alpha \in \mathbb{R}$. (e) $\int_{1}^{\infty} \frac{\sin x}{x^2} dx$. (f) $\sum_{n=1}^{\infty} \frac{\ln n}{n\sqrt{n}}$.

(e)
$$\int_{1}^{\infty} \frac{\sin x}{x^2} dx$$

(f)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n\sqrt{n}}$$

Aufgabe 2 (Uneigentliche Integrale II, 4*+4* Punkte):

(a) Sei $f:[0,\infty)\to\mathbb{R}$ gleichmäßig stetig, und $\int_0^\infty f(x)dx$ konvergiere. Zeigen Sie, dass $\lim_{x\to\infty} f(x) = 0.$

(b) Sei $f:\mathbb{R}\to\mathbb{R}$ stetig und $\int_{-\infty}^{\infty}|f(x)|dx$ konvergiere. Zeigen Sie, dass dann eine Folge $x: \mathbb{N} \to \mathbb{R}$ existiert mit $\lim_{n \to \infty} x_n = \infty$, $\lim_{n \to \infty} x_n f(x_n) = 0$ und $\lim_{n \to \infty} x_n f(-x_n) = 0$.

Der Helpdesk zur Analysis 1 findet für alle Studierenden am Dienstag und Donnerstag jeweils von 13-16 Uhr im Raum N1.002 statt. Der Helpdesk speziell für Lehramtsstudierende findet am Montag von 12-14 Uhr und am Mittwoch von 14-16 Uhr im Raum N0.007, sowie am Donnerstag von 14-16 Uhr im Raum N0.008 statt.

Zusätzliche Helpdesk-Termine für die Klausurvorbereitung im Februar und März können Sie auf der Vorlesungswebsite finden.

Die erste Klausur findet am 13.2. von 9-11 Uhr abhängig vom Anfangsbuchstaben Ihres Nachnamens an folgenden Orten statt:

A-H: Wolfgang-Paul-Hörsaal, Kreuzbergweg 28.

I-R: CP1, Hörsaalzentrum Poppelsdorf.

S-Z: CP2, Hörsaalzentrum Poppelsdorf.