Abgabe in der Vorlesung am Donnerstag, 2017-11-02

Aufgabe 1. (a) Sei X eine Menge, sei A eine beliebige Indexmenge, und für $\alpha \in A$ sei $S_{\alpha} \subseteq \mathcal{P}(X)$ eine σ -Algebra. Zeigen Sie das $S := \bigcap_{\alpha \in A} S_{\alpha}$ ebenfalls eine σ -Albegra ist. (3 Pkt.)

(b) Sei X eine Menge und $M \subseteq \mathcal{P}(X)$. Zeigen Sie dass

$$\sigma(M) := \bigcap_{M \subseteq S \subseteq \mathcal{P}(X), S \text{ } \sigma-\text{algebra}} S$$

die kleinste σ -Algebra ist die die Menge M enthält. Man nennt $\sigma(M)$ die von M erzeugte σ -Algebra. (3 Pkt.)

(c) Sei $S \subseteq \mathcal{P}(X)$ eine σ -Algebra und $f: Y \to X$ eine Funktion. Zeigen Sie dass $\{f^{-1}(A) | A \in S\}$ eine σ -Algebra auf Y ist. (3 Pkt.)

Aufgabe 2. Widerlegen Sie folgende Aussagen:

- (a) Seien S_1, S_2 zwei σ -Algebra auf einer Menge X. Dann ist auch die Vereinigung $S_1 \cup S_2$ eine σ -Algebra. (3 Pkt.)
- (b) Sei $S \subset \mathcal{P}(X)$ mit $\emptyset \in S$, abgeschlossen unter endlichen Vereinigungen und der Bildung von Komplementen. Dann ist S eine σ -Algebra. (3 Pkt.)
- (c) Sei $S \subset \mathcal{P}(X)$ mit $\emptyset, X \in S$, abgeschlossen unter abzählbaren Vereinigungen und abzählbaren Schnitten. Dann ist S eine σ -Algebra. (3 Pkt.)
- (d) Sei $S \subset \mathcal{P}(X)$ eine σ -Algebra und $f: X \to Y$ eine surjektive Funktion. Dann ist $\{f(A) | A \in S\}$ eine σ -Algebra auf Y. (3 Pkt.)

Aufgabe 3. Sei D das Dreieck $\{(x,y) \in \mathbb{R}^2 | 0 \le x, 0 \le y, x+y \le 1\}$. Zeigen Sie dass D Lebesgue-messbar ist und $\mathcal{L}(D) = 1/2$. Hinweis: approximieren Sie D durch Rechtecke. (5 Pkt.)

Aufgabe 4. In dieser Aufgabe bezeichnet \mathcal{L}^* das äußere Lebesguemaß.

- (a) Sei $A \subset \mathbb{R}^n$ mit $\mathcal{L}^*(A) > 0$. Zeigen Sie dass für jedes $0 < \epsilon < 1$ ein Quader Q mit $\mu^*(A \cap Q) \ge (1 \epsilon) \operatorname{Vol}(Q) > 0$ existiert. (3 Pkt.)
- (b) Zeigen Sie dass eine Menge $A \subset \mathbb{R}^n$ genau dann nicht Lebesgue-messbar ist wenn ein Quader Q mit $\operatorname{Vol}(Q) < \mathcal{L}^*(Q \cap A) + \mathcal{L}^*(Q \cap A^c)$ existiert. (3 Pkt.)
- (c) Zeigen Sie dass eine Menge $A \subset \mathbb{R}^n$ genau dann nicht Lebesgue-messbar ist wenn für jedes $1 < \eta < 2$ ein Quader Q mit $\eta \operatorname{Vol}(Q) < \mathcal{L}^*(Q \cap A) + \mathcal{L}^*(Q \cap A^c)$ existiert. (3 Bonuspkt.)

In den folgenden Aufgabenteilen sei $T \subset \mathbb{R}$ eine dichte Teilmenge und $A \subset \mathbb{R}$ eine T-invariante Teilmenge, das heißt, für alle $t \in T$ und $a \in \mathbb{R}$ gilt $a \in A \iff a + t \in A$.

- (d) Man nehme an dass $\mathcal{L}^*(A) > 0$ und $\mathcal{L}^*(A^c) > 0$ gilt, wobei \mathcal{L}^* das äußere Lebesguemaß und $A^c = \mathbb{R} \setminus A$ das Komplement von A bezeichnet. Zeigen Sie dass für jedes $0 < \epsilon < 1$ ein Intervall J mit $0 < \operatorname{Vol}(J) < \infty$ und $\mathcal{L}^*(A \cap J) + \mathcal{L}^*(A^c \cap J) \ge 2(1 \epsilon) \operatorname{Vol}(J)$ existiert. (5 Pkt.)
- (e) Man nehme an dass A messbar ist. Folgern Sie dass entweder $\mathcal{L}^*(A) = 0$ oder $\mathcal{L}^*(A^c) = 0$ gilt. (3 Pkt.)
- (f) Man nehme an dass A nicht messbar ist. Folgern Sie dass für alle Intervalle Q gilt $Vol(Q) = \mathcal{L}^*(Q \cap A) = \mathcal{L}^*(Q \cap A^c)$. (2 Bonuspkt.)