Abgabe in der Vorlesung am Donnerstag, 2017-10-19

Zusammenarbeit bei der Lösungsfindung ist ausdrücklich erwünscht, die endgültige Ausformulierung muss jedoch von Ihnen selbst stammen; es sind nur Einzelabgaben zugelassen. Denken Sie daran Ihren Namen, den Namen Ihres Übungsgruppenleiters, und die Nummer des Übungsblattes auf der Abgabe zu vermerken.

Aufgabe 1. Seien X, Y metrische Räume und $f: X \to Y$ eine Funktion. Zeigen Sie dass folgende Eigenschaften von f äquivalent sind: (10 Pkt.)

- (a) f ist stetig, also $\forall x \in X, \epsilon > 0 \exists \delta > 0 : d(x', x) < \delta \implies d(f(x'), f(x)) < \epsilon$,
- (b) $x_n \to x \implies f(x_n) \to f(x)$,
- (c) für alle offene Teilmengen $U \subset Y$ ist auch $f^{-1}(U)$ offen.

Aufgabe 2. Sei $\mathcal{Q} = \{\prod_{i=1}^n [a_i, b_i) : a_i, b_i \in \mathbb{R}, a_i < b_i, i = 1, \dots, n\}$ die Menge der halboffenen Quader in \mathbb{R}^n . Sei $\mu : \mathcal{Q} \to (0, \infty)$ eine Funktion mit folgenden Eigenschaften:

- (i) $\mu(c+Q) = \mu(Q)$ für alle $Q \in \mathcal{Q}$ und $c \in \mathbb{R}^n$,
- (i) $\mu(Q) = \mu(Q_1) + \mu(Q_2)$ falls $Q, Q_1, Q_2 \in \mathcal{Q}, Q = Q_1 \cup Q_2, \text{ und } Q_1 \cap Q_2 = \emptyset,$
- (i) $\mu([0,1)^n) = 1$.

Zeigen Sie dass für alle halboffene Quader $\mu(\prod_{i=1}^{n} [a_i, b_i)) = \prod_{i=1}^{n} (b_i - a_i)$ gilt. Hinweis: führen Sie dies auf den Fall n = 1 zurück. (10 Pkt.)

Aufgabe 3. Ein nichtleerer abgeschlossener Quader in \mathbb{R}^n ist eine Menge der Form $\prod_{i=1}^n [a_i, b_i]$, wobei $a_i, b_i \in \mathbb{R}$, $a_i \leq b_i, i = 1, \ldots, n$. Wir schreiben $\operatorname{Vol}(\prod_{i=1}^n [a_i, b_i]) = \prod_{i=1}^n (b_i - a_i)$. Die leere Menge ist ebenfalls ein abgeschlossener Quader (mit $\operatorname{Vol}(\emptyset) = 0$).

- (a) Sei $(Q_j)_{j\in\mathbb{N}}$ eine Folge nichtleerer abgeschlossener Quader. Zeigen Sie dass $\cap_j Q_j$ ein abgeschlossener Quader ist. (2 Pkt.)
- (b) Sei $(Q_j)_{j\in\mathbb{N}}$ eine Folge nichtleerer abgeschlossener Quader die in $[0,1]^n$ enthalten sind. Nehmen Sie Vol $(Q_j) > c > 0$ für alle j an. Zeigen Sie dass eine Teilfolge $(Q_{j(k)})_k$ mit Vol $(\cap_k Q_{j(k)}) > 0$ existiert. Hinweis: betrachten Sie zuerst den Fall n = 1. (8 Pkt.)
- **Aufgabe 4.** (a) Finden Sie eine Folge stetiger Funktionen $f_n:[0,1]\to[0,1]$ sodass $\liminf_{n\to\infty}f_n$ nicht Riemann-integrierbar ist. (5 Pkt.)
- (b) Finden Sie eine Folge stetiger Funktionen $g_n:[0,1]\to\mathbb{R}$ sodass $g_n\to g$ punktweise, die Funktion g Riemann-integrierbar ist, aber $\int g_n \not\to \int g$. (5 Pkt.)