Institute for applied mathematics

Graduate Seminar (S4B2-GS PDE)   The ubiquity of Gaussian measures.


Prof. M. Disertori, Dr. Rojas-Molina


The seminar will take place on  Tuesdays 12-14, Room SR 1.007




  1.  April  25 "Gaussian measures and Gibbs measures" (K. Öcal)
  2.  May 2     "Introduction to Gibbs measures"  (J. Justiniano Nava)
  3.  May 9     "The massless GFF Part 1" (S. Sommavilla)
  4.  May 23   "The massless GFF Part 2" (C. Propper)
  5.  June 13  "The massive GFF"  (M. Rajkovic)
  6.  June 20  "O(n) models and Mermin-Wagner theorem" (S. Schreyer)
  7.  July 4     "Mermin-Wagner theorem: proof" (D. Koenen)
  8.  July 11   "Other applications of the continuous symmetry" (L. Schloeder)
  9.  July 18   "Two dimensionals models" (A. Camacho Melo)






Description. Perturbations of Gaussian measures arise in a wide range of fields of mathematics and theoretical physics. In the context of statistical mechanics and theoretical physics, (discrete) Gaussian measures often take the form

 dμC (φ) = dφ e−(φ,C-1 φ)

where φ : Λ → H, with Λ ⊂ Zd , H is a real or complex finite dimensional
Hilbert space, C : Λ × Λ → C is an invertible matrix and (φ, C−1 φ) = ∑ij∈Λ Cij (φi , φj )H .
In this seminar we plan to learn how these measures are related with
some of the most famous models in statistical mechanics.

We will start with a selection of topics from Chapters 8 and 9 of the
book Statistical Mechanics of Lattice Systems: a Concrete Mathematical
Introduction S. Friedli and Y. Velenik (available online here). Chapter 8 deals
with Gaussian free fields, and explains how Gaussian measures can be used to
describe random walks on the lattice. Chapter 9 presents the so called O(n)
models (the prominent examples being Ising, XY and Heisenberg model).
For n > 1, these models are at the core of most theories with continuous
symmetry both in statistical mechanics and field theory. The main result of
this chapter is the celebrated Mermin-Wagner theorem.

According to time/interest we may then read parts of the lecture notes
by D. Brydges Self-Interacting Walk and Functional Integration, relating
random walks with interaction to a generalized version of the Gaussian in-

Possible additional (alternative) topics include: duality transformations
mapping nonGaussian to Gaussian models, and Gaussian measures on ma-

Prerequisites. Functional analysis. Some basic knowledge in probability
may be useful but is not necessary. The necessary preliminary notions on
random walks and probability are all summarized Appendix B.8 B.9 and
B.13 of the book by Friedli and Velenik.


Prof. Jens Frehse (em.) hat die Golden Commemorative Medal der Fakultät für Mathematik und Physik der Karls-Universität Prag erhalten für sein außerordentliches wissenschaftliches Lebenswerk sowie für seine bedeutenden Beiträge zur Analysis Partieller Differentialgleichungen. (01.06.2018)

Die ehemalige Doktorandin am IAM, Lisa Hartung (aktuell: Courant Institute of Mathematical Sciences, New York), wurde für ihre herausragende Doktorarbeit "Extremal Processes in Branching Brownian Motion and Friends" (Betreuer: Prof. Bovier) mit dem Förderpreis der DMV-Fachgruppe Stochastik ausgezeichnet. Details hier. (14.03.2018)

Prof.  Patrik Ferrari erhält den ersten Alexandros Award zusammen mit Ivan Corwin (Columbia University) und Alexei Borodin (MIT) für den Artikel "Free energy fluctuations for directed polymers in random media in 1+1 dimensions".
Details siehe hier. (12.03.2018)

Frau Dr. Martina Vera Baar erhält den Hausdorff-Gedächtnispreis für die beste Dissertation des akademischen Jahres 2016/17 (Betreuer: Prof. Dr. A. Bovier, IAM). (Pressemitteilung, 24.01.2018)


Managing Director: Prof. Dr. Anton Bovier
Chief Administrator: Dr. B. Doerffel
Imprint | Datenschutzerklärung

Mailing address

Institute for Applied Mathematics
University of Bonn
Endenicher Allee 60
D-53115 Bonn / Germany