The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing

You You Zhang (Joint work with Angelos Dassios)

y.zhang78@lse.ac.uk

27th May 2014

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

Motivation

Definition

The MinParisianHit Option is triggered either when the age of the excursion above *L* reaches time *d* or a barrier B > L is hit by the underlying price process *S*. The MaxParisianHit Option is triggered when both the barrier *B* is hit and the excursion age exceeds duration *d* above *L*.

Let the stock price process $(S_t)_{t\geq 0} = \left(S_0 e^{(r-\frac{\sigma^2}{2})t+\sigma W_t}\right)_{t\geq 0}$ follow a geometric Brownian motion and \mathbb{Q} denote the equivalent martingale measure and define

$$g_{L,t}^{S} = \sup\{s \le t : S_{s} = L\}$$

$$d_{L,t}^{S} = \inf\{s \ge t : S_{s} = L\}$$

$$\tau_{d}^{+}(S) = \inf\{t \ge 0 | 1_{S_{t} > L}(t - g_{L,t}^{S}) \ge d\}$$

$$H_{B}(S) = \inf\{t \ge 0 | S_{t} = B\}$$

<ロト<(団)><(巨)<(巨)<(巨)<(巨)<(巨)<(巨)<(C)</td>2/17

Motivation

The fair price of a MinParisianHit Up-and-In Call option with payoff $(S_T - K)^+$ can be written in terms of hitting times in the following way using Girsanov theorem

$$\begin{aligned} \min PHC_{i}^{u}(x, T, K, L, d, r) &= e^{-rT} \mathbb{E}_{\mathbb{Q}} \left((S_{T} - K)^{+} \mathbf{1}_{\min\{\tau_{d}^{+}(S), H_{B}(S)\} \leq T} \right) \\ &= e^{-(r + \frac{1}{2}m^{2})T} \mathbb{E}_{\mathbb{P}} \left((S_{0}e^{\sigma Z_{T}} - K)^{+}e^{mZ_{T}} \mathbf{1}_{\min\{\tau_{d}^{+}(Z), H_{b}(Z)\} \leq T} \right) \\ &= e^{-(r + \frac{1}{2}m^{2})T} \int_{\frac{1}{\sigma} \ln \frac{K}{S_{0}}}^{\infty} (S_{0}e^{\sigma z} - K)e^{mz} \boxed{\mathbb{P} \left(Z_{T} \in dz, \min\{\tau_{d}^{+}(Z), H_{b}(Z)\} \leq T \right)} \end{aligned}$$

where $(Z_t)_{t\geq 0} = (W_t + mt)_{t\geq 0}$ is a \mathbb{P} -Brownian motion and

$$m = \frac{1}{\sigma} \left(r - \frac{\sigma^2}{2} \right) \qquad \qquad l = \frac{1}{\sigma} \ln \frac{L}{S_0} \qquad \qquad b = \frac{1}{\sigma} \ln \frac{B}{S_0}$$

 $\tau_d^+(Z) = \inf\{t \ge 0 | 1_{Z_t > l}(t - g_{l,t}) \ge d\} \quad g_{l,t}^Z = \sup\{u \le t | Z_u = l\} \quad H_b(Z) = \inf\{t \ge 0 | Z_t = b\}$

<ロ> < 部> < 書> < 書> < 書> き の Q (や 3/17) The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Motivation

Motivation

(Dassios and Wu. Perturbed Brownian motion and its application to Parisian option pricing. (2))

4 / 17

- 2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Martingale Problem

Let $W^{\epsilon,\mu}=\mu t+W^\epsilon_t$ be the perturbed drifted Brownian motion around 0. We define a three state semi-Markov process for b>0

$$X_t = \begin{cases} 1^{\star} & \text{if } W_t^{\epsilon,\mu} > b \\ 1 & \text{if } 0 < W_t^{\epsilon,\mu} < b \\ 2 & \text{if } W_t^{\epsilon,\mu} < 0 \end{cases}$$

Let $U_t = t - \bar{g}_t^{\epsilon}$ denote the time elapsed in current state 2 or state 1 and 1^{*} combined (state 1^{*} is an absorbing state). (X_t, U_t) becomes a Markov process. Hence, X_t is a three state semi-Markov process. We consider a bounded function $f_i : \mathbb{R}^2 \to \mathbb{R}$, $i = 1^*, 1, 2$, defined as $f_{X_t}(U_t, t)$. The generator \mathcal{A} is an operator making

$$f_{X_t}(U_t,t) - \int_0^t \mathcal{A}f_{X_s}(U_s,s)ds$$

a martingale. Hence, solving $\mathcal{A}f = 0$ provides us with martingales of the form $f_{X_t}(U_t, t)$.

Martingale Problem

We have

$$\mathcal{A}f_{1}(u,t) = \frac{\partial f_{1}}{\partial t} + \frac{\partial f_{1}}{\partial u} + \lambda_{12}(u) \left(f_{2}(0,t) - f_{1}(u,t)\right) + \lambda_{11^{\star}}(u) \left(Ae^{-\beta t}h(u) - f_{1}(u,t)\right)$$
$$\mathcal{A}f_{2}(u,t) = \frac{\partial f_{2}}{\partial t} + \frac{\partial f_{2}}{\partial u} + \lambda_{21}(u) \left(f_{1}(0,t) - f_{2}(u,t)\right)$$

Since we are not interested in what happens after the absorbing state 1^{*} has been reached, we do not define Af_{1^*} , the generator starting from state 1^{*}. We define the times for d, b > 0

$$\begin{split} & H_b^{\epsilon} = \inf\{t \geq 0 | W_t^{\epsilon,\mu} = b\} \\ & \bar{g}_t^{\epsilon} = \sup\{s \leq t | W_s^{\epsilon,\mu} = 0\} \\ & \tau_d^{\epsilon,+} = \inf\{t > 0 | 1_{W_t^{\epsilon,\mu} > 0}(t - \bar{g}_t) > d\} \end{split}$$

4 ロ ト (部 ト (臣) (臣) 臣) 2 (で) 6/17

Martingale Problem

Definition

Given a function $F(\beta)$, the inverse Laplace transform of F, denoted by $\mathcal{L}^{-1}{F(\beta)}$, is the function f whose Laplace transform is F, i.e.

$$f(t) = \mathcal{L}_{\beta}^{-1} \{ F(\beta) \}|_t \quad \Longleftrightarrow \quad \mathcal{L}_t \{ f(t) \}(\beta) := \int_0^\infty e^{-\beta t} f(t) dt = F(\beta)$$

イロト イロト イヨト イヨト 三日

Note that we consider the inverse Laplace transform with respect to the transformation variable β at the evaluation point *t*.

Martingale Problem

Lemma

For the ϵ -perturbed process we find the Laplace transform

$$A\mathbb{E}_{\epsilon}\left(e^{-\beta H_{b}^{\epsilon}}h(u_{H_{b}^{\epsilon}})1_{H_{b}^{\epsilon}<\tau_{d}^{\epsilon,+}}\right)+B\mathbb{E}_{\epsilon}\left(e^{-\beta \tau_{d}^{\epsilon,+}}1_{\tau_{d}^{\epsilon,+}< H_{b}^{\epsilon}}\right)$$
$$=\frac{Be^{-\beta d}\bar{P}_{1}(d)+A\int_{0}^{d}e^{-\beta w}h(w)p_{11^{\star}}(w)dw}{1-\tilde{P}_{21}(\beta)\hat{P}_{12}(\beta)} \quad (1)$$

<u>Proof:</u> Assuming f having the form $f_i(u, t) = e^{-\beta t}g_i(u)$ and solving $\mathcal{A}f \equiv 0$ with the constraints $g_1(d) = B$ and $g_2(\infty) = 0$ and $g_{1^*}(u) = Ah(u)$ we can solve for g_1 which provides us with martingales of the form $M_t := f_{X_t}(U_t, t) = e^{-\beta t}g_{X_t}(U_t)$. Let $T = \min\{H_b^{\epsilon}, \tau_d^{\epsilon,+}\}$, then Optional Sampling suggests

$$g_{1}(0) = \mathbb{E}(M_{0}) = \mathbb{E}(M_{\tau \wedge t}) = \mathbb{E}(M_{\tau} 1_{\tau < t}) + \mathbb{E}(M_{t} 1_{\tau > t})$$

$$= \mathbb{E}(M_{H_{b}^{\epsilon}} 1_{H_{b}^{\epsilon} < \tau_{d}^{\epsilon, +}} 1_{H_{b}^{\epsilon} < t}) + \mathbb{E}(M_{\tau_{d}^{\epsilon, +}} 1_{\tau_{d}^{\epsilon, +} < H_{b}^{\epsilon}} 1_{\tau_{d}^{\epsilon, +} < t}) + \mathbb{E}(M_{t} 1_{\tau > t})$$

$$\xrightarrow{t \to \infty} \mathbb{E}\left(e^{-\beta H_{b}^{\epsilon}} g_{1^{\star}}(U_{H_{b}^{\epsilon}}) 1_{H_{b}^{\epsilon} < \tau_{d}^{\epsilon, +}}\right) + \mathbb{E}\left(e^{-\beta \tau_{d}^{\epsilon, +}} g_{1}(U_{\tau_{d}^{\epsilon, +}}) 1_{\tau_{d}^{\epsilon, +} < H_{b}^{\epsilon}}\right)$$

$$= A\mathbb{E}\left(e^{-\beta H_{b}^{\epsilon}} h(u_{H_{b}^{\epsilon}}) 1_{H_{b}^{\epsilon} < \tau_{d}^{\epsilon, +}}\right) + B\mathbb{E}\left(e^{-\beta \tau_{d}^{\epsilon, +}} 1_{\tau_{d}^{\epsilon, +} < H_{b}^{\epsilon}}\right)$$

Single Laplace transform of Hitting and Excursion time

Proposition

The Laplace transform of the hitting and excursion time for drifted Brownian motion $\mu t + W_t$ is given by

$$\begin{aligned} A\mathbb{E}\left(e^{-\beta H_{b}}h(u_{H_{b}})\mathbf{1}_{H_{b}<\tau_{d}^{+}}\right) + B\mathbb{E}\left(e^{-\beta \tau_{d}^{+}}\mathbf{1}_{\tau_{d}^{+}$$

where

$$\begin{aligned} f(k,\beta) &= e^{-\sqrt{2\beta + \mu^2} 2kb} \mathcal{N}\left(\sqrt{(2\beta + \mu^2)d} - \frac{2kb}{\sqrt{d}}\right) - e^{\sqrt{2\beta + \mu^2} 2kb} \mathcal{N}\left(-\sqrt{(2\beta + \mu^2)d} - \frac{2kb}{\sqrt{d}}\right) \\ g(k,\beta) &= \sqrt{\frac{2}{\pi d}} e^{-\frac{(2\beta + \mu^2)d}{2} - \frac{2(kb)^2}{d}} \end{aligned}$$

 $9 \, / \, 17$

Double Laplace transform of Hitting and Excursion time

case $H_b < au_d^+$

Proposition

The double Laplace transform of Hitting and Excursion time of a drifted Brownian motion where $H_b < \tau_d^+$ is

$$\begin{split} \mathbb{E}_{0}\left(e^{-\beta H_{b}-\gamma \tau_{d}^{+}}\mathbf{1}_{H_{b}<\tau_{d}^{+}}\right) &= \\ \int_{0}^{d}e^{-\beta w}\left[e^{-\gamma d}\left(1-e^{-2\mu b}\mathcal{N}\left(\frac{\mu(d-w)-b}{\sqrt{d-w}}\right)-\mathcal{N}\left(\frac{-\mu(d-w)-b}{\sqrt{d-w}}\right)\right)+\right. \\ &+ \mathbb{E}_{0}^{\mu}(e^{-\gamma \hat{\tau}_{d}})\left(e^{-(\sqrt{2\gamma+\mu^{2}}+\mu)b}\mathcal{N}\left(\sqrt{(2\gamma+\mu^{2})(d-w)}-\frac{b}{\sqrt{d-w}}\right)+\right. \\ &+ e^{\sqrt{2\gamma+\mu^{2}}-\mu)b}\mathcal{N}\left(-\sqrt{(2\gamma+\mu^{2})(d-w)}-\frac{b}{\sqrt{d-w}}\right)\right) \\ &\times \sqrt{\frac{2}{\pi w^{3}}}e^{\mu b-\frac{\mu^{2} w}{2}}\sum_{k=0}^{\infty}\left(\frac{(2k+1)^{2}b^{2}}{w}-1\right)e^{-\frac{(2k+1)^{2}b^{2}}{2w}}dw \times \\ &\times \left\{2\sum_{k=0}^{\infty}\left[\sqrt{2\beta+\mu^{2}}f(k,\beta)+g(k,\beta)\right]\right\}^{-1} \end{split}$$

Proof:

Lemma

$$\mathbb{E}\left(e^{-\beta H_{b}}h(u_{H_{b}})\mathbf{1}_{H_{b}<\tau_{d}^{+}}\right) = \frac{\int_{0}^{d}e^{-\beta w}h(w)\sqrt{\frac{2}{\pi w^{3}}}e^{\mu b-\frac{\mu^{2}w}{2}}\sum_{k=0}^{\infty}\left(\frac{(2k+1)^{2}b^{2}}{w}-1\right)e^{-\frac{(2k+1)^{2}b^{2}}{2w}}dw}{2\sum_{k=0}^{\infty}\left[\sqrt{2\beta+\mu^{2}}f(k,\beta)+g(k,\beta)\right]}$$

Define $h(u_{H_b}) := \mathbb{E}\left(e^{-\gamma au_d^+} | H_b
ight)$ and the l.h.s becomes

$$\mathbb{E}\left(e^{-\beta H_b}h(u_{H_b})\mathbf{1}_{H_b < \tau_d^+}\right) = \mathbb{E}\left(e^{-\beta H_b}\mathbb{E}\left(e^{-\gamma \tau_d^+}|H_b\right)\mathbf{1}_{H_b < \tau_d^+}\right) = \mathbb{E}\left(e^{-\beta H_b}e^{-\gamma \tau_d^+}\mathbf{1}_{H_b < \tau_d^+}\right)$$

On the other hand, we have

$$\begin{split} h(u_{H_b}) &= \mathbb{E}_0 \left(e^{-\gamma (H_b + d - u_{H_b})} \mathbf{1}_{\tilde{H}_0 > d - u_{H_b}} \left| H_b \right) + \mathbb{E}_0 \left(e^{-\gamma (H_b + \tilde{H}_0 + \hat{\tau}_d)} \mathbf{1}_{\tilde{H}_0 < d - u_{H_b}} \left| H_b \right) \right. \\ &= e^{-\gamma H_b} \left[e^{-\gamma (d - u_{H_b})} \mathbb{P}_b(\tilde{H}_0 > d - u_{H_b}) + \mathbb{E}_b \left(e^{-\gamma \tilde{H}_0} \mathbf{1}_{\tilde{H}_0 < d - u_{H_b}} \right) \mathbb{E}_0(e^{-\gamma \hat{\tau}_d}) \right] \end{split}$$

<ロ> < 部> < 書> < 書> < 書> 差 のQで 11/17 case $au_d^+ < H_b$

Proposition

The double Laplace transform of Hitting and Excursion time of a drifted Brownian motion where $\tau_d^+ < H_b$ is

$$\mathbb{E}\left(e^{-\beta\tau_{d}^{+}-\gamma H_{b}}\mathbf{1}_{\tau_{d}^{+}$$

◆□ → < 部 → < 差 → < 差 → 差 → ○ < (* 12/17

Proof:

Lemma

$$\mathbb{E}\left(e^{-\beta\tau_{d}^{+}}\mathbf{1}_{\tau_{d}^{+} < H_{b}}\right) = \frac{e^{-\beta d}\sum_{k=0}^{\infty}\left[g(k,0) - e^{\mu b}g(k+\frac{1}{2},0) + \mu\left[f(k,0) - f(k+1,0)\right]\right]}{\sum_{k=0}^{\infty}\left[\sqrt{2\beta + \mu^{2}}f(k,\beta) + g(k,\beta)\right]}$$

We define a new generator starting at time τ_d^+ . State 1^{*} is a killed state.

$$\mathcal{A}f_{1}(u,t) = \frac{\partial f_{1}}{\partial t} + \frac{\partial f_{1}}{\partial u} + \lambda_{11^{\star}}(u) \left(e^{-\gamma t} - f_{1}(u,t)\right)$$

At time τ_d^+ we are in state 1 with $f_1(d, 0) = g_1(d)$. Solving $\mathcal{A}f \equiv 0$ with constraint $g_1(\infty) = 0$ we derive $g_1(d)$. As a result we have found a martingale $M_t := f_{X_t}(U_t, t)$ with $M_0 = f_1(d, 0) = g_1(d)$. Also, with T_b being the first hitting time of *b* of our process starting at τ_d^+ and hence $H_b = \tau_d^+ + T_b$,

$$M_{T_b} = f_{1^\star}(U_{T_b}, T_b) = e^{-\gamma T_b}$$

Hence, OST yields $g_1(d) = \mathbb{E}(e^{-\gamma T_b})$ and the double Laplace becomes

$$\mathbb{E}(e^{-\beta\tau_d^+}e^{-\gamma H_b}\mathbf{1}_{\tau_d^+ < H_b}) = \mathbb{E}(e^{-\beta\tau_d^+}\mathbf{1}_{\tau_d^+ < H_b}\mathbb{E}(e^{-\gamma H_b}|\tau_d^+))$$
$$= \mathbb{E}(e^{-\beta\tau_d^+}\mathbf{1}_{\tau_d^+ < H_b}\mathbb{E}(e^{-\gamma(\tau_d^+ + T_b)}|\tau_d^+)) = g_1(d)\mathbb{E}(e^{-(\beta+\gamma)\tau_d^+}\mathbf{1}_{\tau_d^+ < H_b})$$

The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Application

Application to MinParisianHit options

$$minPHC_i^u = e^{-(r+\frac{1}{2}m^2)T} \int_{\frac{1}{\sigma} \ln \frac{K}{x}}^{\infty} (xe^{\sigma z} - K)e^{mz} \boxed{\mathbb{P}\left(Z_T \in dz, \min\{\tau_d^+(Z), H_b(Z)\} \le T\right)}$$

Proposition

The joint density of position at maturity and minimum of hitting and excursion time for standard Brownian motion is

$$P(Z_T \in dz, \min\{\tau_d^+, H_b\} \le T) = \int_{t=0}^T \int_{w=-\infty}^b \frac{1}{\sqrt{2\pi(T-t)}} e^{-\frac{(z-w)^2}{2(T-t)}} \times \left[\frac{\sum_{k=-\infty}^\infty \frac{w+2kb}{d} e^{-\frac{(w+2kb)^2}{2d}}}{\sum_{k=-\infty}^\infty \left(e^{-\frac{(2kb)^2}{2d}} - e^{-\frac{(2k+1)^2b^2}{2d}}\right)} \mathcal{L}_{\beta}^{-1}\{H_1(\beta)\}|_t + \delta_{(w-b)} \mathcal{L}_{\beta}^{-1}\{H_2(\beta)\}|_t\right] dw dt$$

$$H_{1}(\beta) = \frac{e^{-\beta d} \sum_{k=0}^{\infty} \left[g(k,0) - g(k+\frac{1}{2},0) \right]}{\sum_{k=0}^{\infty} \left[\sqrt{2\beta} f(k,\beta) + g(k,\beta) \right]} , \quad H_{2}(\beta) = \frac{\sum_{k=0}^{\infty} \sqrt{2\beta} f(k+\frac{1}{2},\beta) + g(k+\frac{1}{2},\beta)}{\sum_{k=0}^{\infty} \left[\sqrt{2\beta} f(k,\beta) + g(k,\beta) \right]}$$

<u>Proof:</u> Let Z denote a standard Brownian motion and $\tau := \min\{\tau_d^+, H_b\}$.

$$\mathbb{P}(Z_{T} \in dz, \min\{\tau_{d}^{+}, H_{b}\} \leq T) = \int_{t=0}^{T} \int_{w=-\infty}^{b} \mathbb{P}(Z_{T} \in dz | \tau = t, Z_{\tau} \in dw) \mathbb{P}(\tau \in dt, Z_{\tau} \in dw)$$

$$= \int_{t=0}^{T} \int_{w=-\infty}^{b} \frac{1}{\sqrt{2\pi(T-t)}} e^{-\frac{(z-w)^{2}}{2(T-t)}} dz \mathbb{P}(\tau \in dt, Z_{\tau} \in dw)$$

$$= \int_{t=0}^{T} \int_{w=-\infty}^{b} \frac{1}{\sqrt{2\pi(T-t)}} e^{-\frac{(z-w)^{2}}{2(T-t)}} dz \Big\{ \mathbb{P}(\tau \in dt, Z_{\tau} \in dw | H_{b} < \tau_{d}^{+}) \mathbb{P}(H_{b} < \tau_{d}^{+}) +$$

$$+ \mathbb{P}(\tau \in dt, Z_{\tau} \in dw | \tau_{d}^{+} < H_{b}) \mathbb{P}(\tau_{d}^{+} < H_{b}) \Big\}$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

case
$$H_b < \tau_d^+$$
:

$$\begin{split} & \left[\mathbb{P}(\tau \in dt, Z_{\tau} \in dw | H_b < \tau_d^+) \mathbb{P}(H_b < \tau_d^+) \right] \\ &= \mathbb{P}(Z_{H_b} \in dw | \tau = t, H_b < \tau_d^+) \mathbb{P}(\tau \in dt, H_b < \tau_d^+) \\ &= \delta_{(w-b)} dw \mathcal{L}_{\beta}^{-1} \left\{ \mathbb{E} \left(e^{-\beta \min\{H_b, \tau_d^+\}} \mathbf{1}_{H_b < \tau_d^+} \right) \right\} \Big|_t dt \end{split}$$

case $\tau_d^+ < H_b$:

$$\begin{split} & \left[\mathbb{P}(\tau \in dt, Z_{\tau} \in dw | \tau_d^+ < H_b) \mathbb{P}(\tau_d^+ < H_b) \right] \\ &= \mathbb{P}(Z_{\tau_d^+} \in dw | \tau = t, \tau_d^+ < H_b) \mathbb{P}(\tau \in dt, \tau_d^+ < H_b) \\ &= \lim_{\epsilon \to 0} \mathbb{P}_{\epsilon}(Z_d \in dw | \inf_{0 < s < d} Z_s > 0, \sup_{0 < s < d} Z_s < b) \mathbb{P}(\tau \in dt, \tau_d^+ < H_b) \\ &= \frac{\sum_{k=-\infty}^{\infty} \frac{w + 2kb}{d} e^{-\frac{w + 2kb^2}{2d}} dw}{\sum_{k=-\infty}^{\infty} \left(e^{-\frac{(2k+1)^2b^2}{2d}} - e^{-\frac{(2k+1)^2b^2}{2d}} \right)} \mathcal{L}_{\beta}^{-1} \left\{ \mathbb{E} \left(e^{-\beta \tau_d^+} \mathbf{1}_{\tau_d^+ < H_b} \right) \right\} \Big|_t dt \end{split}$$

The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Application

References

- Marc Chesney, Monique Jeanblanc-Picque, and Marc Yor. Brownian Excursions and Parisian Barrier Options. Annals of Applied Probability, 29, 1997.
- [2] Angelos Dassios and Shanle Wu. Perturbed Brownian motion and its application to Parisian option pricing. Finance and Stochastics, 14(3):473–494, November 2009.
- [3] Angelos Dassios and Shanle Wu. Double-Barrier Parisian options. Journal of Applied Probability, 48(1):1–20, 2011.

イロト イポト イヨト イヨト 二日