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Motivation

Definition

The MinParisianHit Option is triggered either when the age of the excursion
above L reaches time d or a barrier B > L is hit by the underlying price process
S. The MaxParisianHit Option is triggered when both the barrier B is hit and
the excursion age exceeds duration d above L.

Let the stock price process (St)¢>0 = <Soe('_072)t+"w*> follow a geometric
Brownian motion and QQ denote the equivalent martingaltezrqneasure and define
gile=sup{s<t:S =L}
dit:inf{sz t:Ss=1L}

75(S) = inf{t > 015,51 (t — gi¢) > d}
Hg(S) = inf{t > 0|S; = B}
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Motivation

The fair price of a MinParisianHit Up-and-In Call option with payoff (St — K)*
can be written in terms of hitting times in the following way using Girsanov
theorem

minPHC!(x, T, K, L, d,r) = e "Eg ((ST - K)+1man{f;(5),HB(5)}g)
l,7"‘2 o m.
— e_(r+2 )TE]P’ ((Soe Zr K)+e ZTlmin{T;(Z),Hb(Z)}ST)

oo
1.2
—(r+im)T
—e (r+2m) (Soeaz_K)emz
1, K
o "5

P (Zr € dz,min{r; (Z), Hs(Z)} < T) \

where (Z;);>0 = (W; + mt);>¢ is a P-Brownian motion and
1 o? 1L 1 B
m=—|r—— I=—In— b= —In—
o 2 o So [eg So

T4 (Z) = inf{t > 0|1z,5/(t — g1c) > d} g =sup{u < t|Z, =1}  Hyp(Z) =inf{t >0|Z = b}
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The trajectory of the original Brownian Motion
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(Dassios and Wu. Perturbed Brownian motion and its application to Parisian option pricing. (2))
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Martingale Problem

Let W* = ut + W be the perturbed drifted Brownian motion around 0. We
define a three state semi-Markov process for b > 0

1 ifWoH > b
Xe=4¢1 f0o< WS <b
2 WSt <o
Let U: = t — g5 denote the time elapsed in current state 2 or state 1 and 1*
combined (state 1* is an absorbing state). (X:, U:) becomes a Markov process.
Hence, X: is a three state semi-Markov process.

We consider a bounded function f; : R> = R, i = 1%, 1,2, defined as x, (Us, t).
The generator A is an operator making

x,(Us, t) / Afx, (Us, s)ds

a martingale. Hence, solving Af = 0 provides us with martingales of the form
th(Ut, t).
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Martingale Problem

We have
of  of -

Af(u, £) = S5+ S+ Ma(u) (R(0, 1) = i, £)) + A (u) (Ae™"*h(u) — i(u, 1))
of | OF

A, t) = 52+ 52 4+ Xar(w) (R0, ) — f(u, 1)

Since we are not interested in what happens after the absorbing state 1* has
been reached, we do not define Afi«, the generator starting from state 1*.
We define the times for d, b > 0

HE = inf{t > O|WS " = b}
g =sup{s < t|W;" =0}
g =inf{t > 0|1yenso(t — &) > d}
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Double Laplace of Excursion and Hitting time

Martingale Problem

Definition

Given a function F(f3), the inverse Laplace transform of F, denoted by
L7YF(B)}, is the function f whose Laplace transform is F, i.e.

) = CGHEBMNe = LAANE) = [ e H(od = F(5)

Note that we consider the inverse Laplace transform with respect to the
transformation variable /3 at the evaluation point t.
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Martingale Problem

For the e-perturbed process we find the Laplace transform

_BHE —pret
AE. (e g bh(“H§)1H§<T;'+) + BE. (e o 1T§’+<H§)
_ Be PPi(d) + A [ e h(w)pu+ (w)dw
1-— /Szl(ﬁ)/slz(ﬁ)

Proof: Assuming f having the form fi(u,t) = e ?'g;(u) and solving Af =0
with the constraints gi(d) = B and g»(c0) = 0 and g1+ (u) = Ah(u) we can
solve for g1 which provides us with martingales of the form

M, := fx, (U, t) = e P'gx,(Us). Let T = min{Hj, 75"}, then Optional
Sampling suggests

£1(0) = E(Mo) = E(Mrat) = E(Mrlr<t) + E(Mel7sy)
= E(MHE 1HZ<T;,+ 1H§<t) + E(M et 1T§’+<H§17';'+<t) + E(Mt1T>t)

Td

(1)

v

— E (eiBHEgl*(UHE)l e +) +E (efBT;&gl(U e +)1 e+ )
b/ HE <7, Ty Ty <Hj

t—o0

_BHE _ €,+
= AE (& h(ung )1y o0 ) + BE (77700 L ey )
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Single Laplace transform of Hitting and Excursion time

The Laplace transform of the hitting and excursion time for drifted Brownian motion
pt + Wt is given by

AE (&P h(up, )Ly, <t ) + BE (7P 11y ) =

{QBe 5"2[ (k,0) —e“bg(k—I—f 0) + u[f(k,0) — F(k +1, 0)]]

d 2 2, = 2k + 1)2p2 Kk11)2p2
+ A/ e P h(w) 736‘“)_#7 Z (w - 1) e @ dw}
0 b

w =0 w

3" (VT ) + s8] b
d }

k=0

where

f(k,,B):e*\/W%bN(\/m f;g) \/WzkbN<_ 25+ )_&>

Vd
2 (@B+p2)d _ 2(kb)?
gk B) =g~ 71
T

9/17



The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing
Double Laplace of Excursion and Hitting time

Double Laplace transform of Hitting and Excursion time

case H, < Tj'

Proposition

The double Laplace transform of Hitting and Excursion time of a drifted Brownian
motion where Hp, < Tj is

G CER
fer e G )
+ E&(e—m)<e-<Www (Ver+me-w- ==+
N (_m_ L) ﬂ y

Vd—w
[ 2 2, X 2k + 1)2p2 (2k+1)22
X —3e”b7 % E <u — 1) e~ e dw x
W = w

o -1
x {22 [V25+ k2t (k, B) +g(k,6)]}
k=0
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Proof:

E (7" h(um, )1y, <t ) =

2y o0 2,2 (2k+1)2p?
fod e‘ﬁwh(w),/#e“b’% > <7(2k+$) & _ 1) e” 2w dw

k=0

25 [V2B+12F(k,8) + &(k, B)

Define h(up,) :=E (ef'wdeb) and the |.h.s becomes
_ _ _ + _ _ +
E (e Bth(qu)le<T;) =F (e BHyR (e VT4 ‘Hb) 1H,,<-rj) =E (e BHp g=T4 le<Tj)

On the other hand, we have

—y(Hp+d— —(Hp+Ho+7
h(up,) = Eo (e v(Hp UHb)lF/O>d—qu}Hb> + Ry (e v(Hp+ 0+Td)1FIo<d—qu|Hb>

— e M [eiV(diqu)Pb(Flo >d— qu) +E, (ei'YF,OlI:IO<d7qu) Eo(efﬁd)]
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+
case 7, < Hp

Proposition

The double Laplace transform of Hitting and Excursion time of a drifted Brownian
motion where 7'; < Hp is

E(e—ﬁT;—WHb]_T;<Hb) - {eﬁd [e*b(\/m*u)/\/ (% /@y + ,u2)d) _
eb(V2r i —u) pr (f% - ./(2y+u2)d) ] i [ (k,0) — et (k+ 2,0+

k=0
u[f(k,O)f(kH,O)]]} {Z[\/ (B+7) + 12f(k, B+ ) + &k, B +7)] X
k=0

—

() e ()]}
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Proof:

e=hd ?} [6(k,0) — ebg(k + 1,0) + u[f(k,0) — F(k +1,0)]
=0

E (efﬁ‘ﬂf lfj<Hb) =

> [VaB T 12F(k, ) + (k. 5)] }

We define a new generator starting at time Td+. State 1* is a killed state.
ofi  0fi

Afi(u, t) = Bt + e + A1x (u) (e77F = fi(u, 1))

At time 7 we are in state 1 with fi(d,0) = g1(d). Solving Af = 0 with constraint
g1(c0) = 0 we derive g1(d). As a result we have found a martingale M; := fx, (U, t)
with My = fi(d,0) = gi(d). Also, with T}, being the first hitting time of b of our
process starting at T; and hence Hp, = T; + Tp,

M7, = fis(Ur,, Tp) = e 775
Hence, OST yields g1(d) = E(e~?7b) and the double Laplace becomes
—_grt —_grt _
E(e 7T e WHb1J<Hb) = (e P C i)
_ + _ + _ +
= (e L (e ) = su(d)E(e L )
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Application to MinParisianHit options

1.2 e
minPHC! = e~ \f2m ’T/

Tz _ pye™
. Ir|£(xe e

P (ZT € dz, min{7} (2), Hy(2)} < T)

The joint density of position at maturity and minimum of hitting and excursion time for standard
Brownian motion is

1 _(=w)?
P(Zr € dz,min{r;, Hp} < T) = e AT-9 x

(2kb)2 (2k+1)2p2 ﬁgl{Hl(B)}‘t + 5(w—b)£/;1{H2(ﬁ)}|f:| dw dt
> <e* 2d —e  2d )
k=—o0

e 5 [g(k,0) — glk + 1,0)]
H(B) = —z T L H(E) = =
3 [VaBF(k.B) + 8(k. B)] 5 [vaBt(k. 6) + &(k. 9)

Ml

>

V2Bf(k+ 3,8) +&(k+3,8)
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Proof: Let Z denote a standard Brownian motion and 7 := min{T;, Hp}.

T b
/ P(Zt € dz|T = t,Z; € dw)P(T € dt, Z; € dw)

t=0 w=—o00

P(Z7 € dz,min{7],Hy} < T) =

(z=w)?

e AT-9dzP(r € dt, Z; € dw)

\xq rl.“:\*i

b

. _(z=w)?
/ [ — 2(T—t) dz{
27r(Tf t)
we—

P(r € dt, Z» € dw|r} < Hp)P(r] < Hp) ‘}

t w=

P(r € dt, Z- € dw|H, < T)P(H, < ) |+

t

Il
— ©
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case Hp < 7';:

P(r € dt, Zr € dw|H, < 7)P(H, < 7) ‘

=P(Z, € dw|r = t,H, < 7 )P(T € dt, H, < 7)
_ -1 —Bmin{Hy, 7}
= 5(W_b)dwﬁﬁ {IE (e b:Tq le<Tj>

dt
t

case T;' < Hp:

P(r € dt, Z- € dw|r] < Hp)P(r] < Hp) ‘

= IP’(ZT+ € dw|r =t, 7] < Hp)P(r € dt, 7] < Hp)

= I|m Pc(Z4 € dw\ |nf Zs >0, sup Zs < b)P(r € dt, 7} < Hp)

0<s<d
_ w+2kb)
7W+d2kbe dw
k=—o00 7—+
= d
oo (2kb)2 @12 T {E ( 1T;<Hb>} ‘t dt
> (% -
k=—o00
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