Intersections of SLE paths Young Women in Probability 2014 Bonn, Germany

Hao Wu

MIT, USA Joint work with Jason Miller (MIT)

May 27 2014

Hao Wu (MIT, USA)

Intersections of SLE paths

May 27 2014 1 / 24

Derive the Hausdorff dimension

Table of contents

2 Imaginary Geometry

Derive the Hausdorff dimension

SLE (Schramm Loewner Evolution)

Random fractal curves in $D \subset \mathbb{C}$ from *a* to *b*. Candidates for the scaling limit of discrete Statistical Physics models.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SLE (Schramm Loewner Evolution)

Random fractal curves in $D \subset \mathbb{C}$ from *a* to *b*. Candidates for the scaling limit of discrete Statistical Physics models.

Conformal invariance :

If γ is in *D* from *a* to *b*, and $\varphi : D \to \varphi(D)$ conformal map, then $\varphi(\gamma) \stackrel{d}{\sim}$ the one in $\varphi(D)$ from $\varphi(a)$ to $\varphi(b)$.

Domain Markov property : the conditional law of $\gamma[t, \infty)$ given $\gamma[0, t] \stackrel{d}{\sim}$ the one in $D \setminus \gamma[0, t]$ from $\gamma(t)$ to *b*.

A D N A P N A D N A D

May 27 2014 4 / 24

Examples of SLE

One parameter family of growing processes SLE_{κ} for $\kappa \ge 0$. Simple, $\kappa \in [0, 4]$; Self-touching, $\kappa \in (4, 8)$; Space-filling, $\kappa \ge 8$.

Thanks to Tom Kennedy

Examples of SLE

One parameter family of growing processes SLE_{κ} for $\kappa \ge 0$. Simple, $\kappa \in [0, 4]$; Self-touching, $\kappa \in (4, 8)$; Space-filling, $\kappa \ge 8$.

Thanks to Tom Kennedy

- κ = 2 : LERW
 (Lawler, Schramm, Werner)
- κ = 3 : Critical Ising (Smirnov, Chelkak et al.)
- κ = 4 : Level line of GFF (Schramm, Sheffield, Miller)
- κ = 6 : Percolation (Smirnov, Camia, Newman)

 κ = 8 : UST (Lawler, Schramm, Werner)

Thanks to Miller Hao Wu (MIT, USA)

Thanks to Miller

Hao Wu (MIT, USA)

Proposition : [Miller, W.] The Hausdorff dimension of the double points of SLE_{κ} is, almost surely,

$$1 + rac{\kappa}{8} - rac{6}{\kappa}$$
 for $\kappa \in (4, 8)$
 $1 + rac{2}{\kappa}$ for $\kappa \ge 8$

Intersections of SLE paths

Hao Wu (MIT, USA)

Proposition : [Miller, W.] The Hausdorff dimension of the double points of SLE_{κ} is, almost surely,

$$1+rac{\kappa}{8}-rac{6}{\kappa}$$
 for $\kappa\in(4,8)$
 $1+rac{2}{\kappa}$ for $\kappa\geq 8$

Proposition : [Miller, W.] The Hausdorff dimension of the cut points of SLE_{κ} is, almost surely,

$$3-rac{3\kappa}{8}$$
 for $\kappa\in(4,8)$

 $\kappa \in (4, 8)$ Double points

$$1+rac{\kappa}{8}-rac{6}{\kappa}$$

Cut points

$$3-\frac{3\kappa}{8}$$

 $\kappa \in (4, 8)$ Double points

$$1+\frac{\kappa}{8}-\frac{6}{\kappa}$$

Cut points

$$3-\frac{3\kappa}{8}$$

• Critical percolation : $\kappa = 6$

double point dimension : $\frac{3}{4}$, predicted by Duplantier in 1987 cut point dimension : $\frac{3}{4}$, proved by Lawler, Schramm, Werner in 2001

 $\kappa \in (4, 8)$ Double points

$$1+\frac{\kappa}{8}-\frac{6}{\kappa}$$

Cut points

$$3-\frac{3\kappa}{8}$$

 Critical percolation : κ = 6 double point dimension : ³/₄, predicted by Duplantier in 1987 cut point dimension : ³/₄, proved by Lawler, Schramm, Werner in 2001

• Brownian excursion :

cut point dimension : $\frac{3}{4}$, proved by Lawler, Schramm, Werner in 2001

 $\kappa \in (4, 8)$ Double points

$$1+\frac{\kappa}{8}-\frac{6}{\kappa}$$

Cut points

$$3-\frac{3\kappa}{8}$$

 Critical percolation : κ = 6 double point dimension : ³/₄, predicted by Duplantier in 1987 cut point dimension : ³/₄, proved by Lawler, Schramm, Werner in 2001

- Brownian excursion : cut point dimension : ³/₄, proved by Lawler, Schramm, Werner in 2001
- FK model : κ ∈ (4,8) double point dimension and cut point dimension, predicted by Duplantier in 1989 and 2004 respectively.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Relation with other dimensions

		🖊 Beffara	Miller and Wu		
	SLE_{κ}	$\kappa \in (0,4]$	$\kappa \in (4,8)$	$\kappa \ge 8$	
	Trace	$1 + \frac{\kappa}{8}$	$1 + \frac{\kappa}{8}$	2	
	Double point	Ø	$1 + \frac{\kappa}{8} - \frac{6}{\kappa}$	$1 + \frac{2}{\kappa}$	
	Triple point	Ø	Ø	countable	
	Cut point	$1 + \frac{\kappa}{8}$	$3 - \frac{3\kappa}{8}$	Ø	
В	oundary poin	t Ø	$2-\frac{8}{\kappa}$	1	
	Alberts and Sheffield				

イロト イヨト イヨト イヨト

Key in the proof

Key in the proof :

one-point estimate : martingale. two-point estimate : coupling between SLE and GFF, work by Sheffield and Miller

Imaginary Geometry I,II,III,IV.
 Imaginary Geometry I : Interacting SLEs

Table of contents

Background and Main Statements

Imaginary Geometry

Derive the Hausdorff dimension

DGFF with mean zero : a measure *h* on functions $\rho : D \to \mathbb{R}$ and $\rho = 0$ on ∂D with density

$$\frac{1}{\mathcal{Z}}\exp(-\frac{1}{2}\sum_{x\sim y}(\rho(x)-\rho(y))^2)$$

for $D \subset \mathbb{Z}^2$.

- For each vertex x, h(x) Gaussian r.v.
- Covariance : Green's function for SRW
- Mean value : zero.

Thanks to Miller, Sheffield

< ロ > < 同 > < 回 > < 回 >

DGFF with mean zero : a measure *h* on functions $\rho : D \to \mathbb{R}$ and $\rho = 0$ on ∂D with density

$$\frac{1}{\mathcal{Z}}\exp(-\frac{1}{2}\sum_{x\sim y}(\rho(x)-\rho(y))^2)$$

for $D \subset \mathbb{Z}^2$.

- For each vertex x, h(x) Gaussian r.v.
- Covariance : Green's function for SRW
- Mean value : zero.

DGFF with mean h_{∂} : DGFF with mean zero plus a harmonic function h_{∂} .

- For each vertex x, h(x) Gaussian r.v.
- Covariance : Green's function for SRW
- Mean value : h∂(x) < □ > < @ > < ≥ > < ≥ > ≥ つへ(Intersections of SLE paths May 27 2014 11/24

Thanks to Miller,

Sheffield

Hao Wu (MIT, USA)

Thanks to Miller, Sheffield $\mathsf{DGFF} \to \mathsf{GFF}\ h$

- (h, ρ) Gaussian r.v.
- Covariance :

$$cov((h,\rho_1),(h,\rho_2)) = \iint dx dy G_D(x,y)\rho_1(x)\rho_2(y)$$

• Mean value :
$$\mathbb{E}((h, \rho)) = (h_{\partial}, \rho).$$

★ ▲ ■ ▶ ■ 少への May 27 2014 12 / 24

・ロト ・ 四ト ・ ヨト ・ ヨト

Thanks to Miller, Sheffield $\mathsf{DGFF} \to \mathsf{GFF}\ h$

- (h, ρ) Gaussian r.v.
- Covariance :

$$cov((h,\rho_1),(h,\rho_2)) = \iint dx dy G_D(x,y)\rho_1(x)\rho_2(y)$$

- Mean value : $\mathbb{E}((h, \rho)) = (h_{\partial}, \rho).$
- Conformal invariance Domain Markov Property

< ロ > < 同 > < 回 > < 回 >

Flow lines of GFF

• *h* smooth, $\chi > 0$ constant. Vector field $e^{ih/\chi}$

イロト イヨト イヨト イヨト

Flow lines of GFF

- *h* smooth, $\chi > 0$ constant. Vector field $e^{ih/\chi}$
- Flow line of the field :

$$rac{d}{dt}\eta(t)=oldsymbol{e}^{ih(\eta(t))/\chi}$$

イロト イ団ト イヨト イヨト

Flow lines of GFF

- *h* smooth, $\chi > 0$ constant. Vector field $e^{ih/\chi}$
- Flow line of the field :

$$rac{d}{dt}\eta(t)=oldsymbol{e}^{ih(\eta(t))/\chi}$$

• Flow line of the field with angle θ : $h + \theta \chi$

Flow lines of GFF

- *h* smooth, $\chi > 0$ constant. Vector field $e^{ih/\chi}$
- Flow line of the field :

$$rac{d}{dt}\eta(t)=oldsymbol{e}^{ih(\eta(t))/\chi}$$

• • • • • • • • • • • • •

• Flow line of the field with angle θ : $h + \theta \chi$

Properties : non-crossing, monotonicity.

Flow lines of GFF

- *h* smooth, $\chi > 0$ constant. Vector field $e^{ih/\chi}$
- Flow line of the field :

$$rac{d}{dt}\eta(t)=oldsymbol{e}^{ihlacksymbol{h}(\eta(t))/\chi}$$

- Flow line of the field with angle θ : $h + \theta \chi$
- Properties : non-crossing, monotonicity.
- *h* GFF, "Vector field" $e^{ih/\chi}$

Flow lines of GFF

- *h* smooth, $\chi > 0$ constant. Vector field $e^{ih/\chi}$
- Flow line of the field :

$$rac{d}{dt}\eta(t)=oldsymbol{e}^{ihlacksymbol{h}(\eta(t))/\chi}$$

- Flow line of the field with angle θ : $h + \theta \chi$
- Properties : non-crossing, monotonicity.
- *h* GFF, "Vector field" $e^{ih/\chi}$
- Flow lines of the field are SLE_κ curves

$$\kappa \in (0,4), \quad \chi = rac{2}{\sqrt{\kappa}} - rac{\sqrt{\kappa}}{2}$$

Interactions of flow lines $\kappa \in (0, 4), \chi = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}$

Flow lines of $e^{ih/\chi}$ with angles θ_1 and θ_2 : η_1 and η_2

Interactions of flow lines $\kappa \in (0, 4), \chi = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}$

Flow lines of $e^{ih/\chi}$ with angles θ_1 and θ_2 : η_1 and η_2

 $\theta_1 > \theta_2$: η_1 stays to the left of η_2 , but may have intersection

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Interactions of flow lines $\kappa \in (0, 4), \chi = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}$

Flow lines of $e^{ih/\chi}$ with angles θ_1 and θ_2 : η_1 and η_2

 $\theta_1 > \theta_2$: η_1 stays to the left of η_2 , but may have intersection

 $\theta_1 = \theta_2$: η_1 merges with η_2 upon intersecting and never separates

A (10) × A (10) × A (10)

Interactions of flow lines $\kappa \in (0, 4), \chi = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}$

Flow lines of $e^{ih/\chi}$ with angles θ_1 and θ_2 : η_1 and η_2

 $\theta_1 > \theta_2$: η_1 stays to the left of η_2 , but may have intersection

 $\theta_1 = \theta_2$: η_1 merges with η_2 upon intersecting and never separates

 $\theta_1 < \theta_2$:

・ロト ・ 四ト ・ ヨト ・ ヨト

 η_1 crosses η_2 upon intersecting and never crosses back

Simulations of the flow lines of GFF

$$\kappa \in (0,4), \quad \chi = rac{2}{\sqrt{\kappa}} - rac{\sqrt{\kappa}}{2}, \quad \exp(ih/\chi)$$

Table of contents

Background and Main Statements

2 Imaginary Geometry

Derive the Hausdorff dimension

< ロ > < 同 > < 回 > < 回 >

Intersection of flow line and the boundary

Proposition [Miller and W.]

$$\eta \sim \mathsf{SLE}_{\kappa}(
ho), \, \kappa \in (0, 4),
ho \in (-2, rac{\kappa}{2} - 2),$$

$$\dim_{H}(\eta \cap \mathbb{R}) = 1 - \frac{1}{\kappa}(\rho + 2)\left(\rho + 4 - \frac{\kappa}{2}\right), \quad a.s.$$

イロト イヨト イヨト イヨト

Intersection of flow line and the boundary

Proposition [Miller and W.]

$$\eta \sim \mathsf{SLE}_\kappa(
ho),\,\kappa\in(\mathsf{0},\mathsf{4}),
ho\in(-\mathsf{2},rac{\kappa}{\mathsf{2}}-\mathsf{2}),$$

$$\dim_{H}(\eta \cap \mathbb{R}) = 1 - \frac{1}{\kappa}(\rho + 2)\left(\rho + 4 - \frac{\kappa}{2}\right), \quad a.s.$$

- one-point estimate : martingale.
- two-point estimate : Interaction of flow lines.

ъ

A D M A A A M M

- 4 ∃ →

Intersection of two flow lines

Proposition [Miller and W.] $\theta_1 < \theta_2, \eta_1 \sim \text{angle } \theta_1, \eta_2 \sim \text{angle } \theta_2, \rho = (\theta_2 - \theta_1)\chi/\lambda - 2$

$$\dim_{H}(\eta_{1} \cap \eta_{2} \cap \mathbb{H}) = 2 - \frac{1}{2\kappa} \left(\rho + \frac{\kappa}{2} + 2\right) \left(\rho - \frac{\kappa}{2} + 6\right), \quad a.s.$$

Intersection of two flow lines

Proposition [Miller and W.] $\theta_1 < \theta_2, \ \eta_1 \sim \text{angle } \theta_1, \ \eta_2 \sim \text{angle } \theta_2, \ \rho = (\theta_2 - \theta_1)\chi/\lambda - 2$

$$\dim_{H}(\eta_{1} \cap \eta_{2} \cap \mathbb{H}) = 2 - \frac{1}{2\kappa} \left(\rho + \frac{\kappa}{2} + 2 \right) \left(\rho - \frac{\kappa}{2} + 6 \right), \quad a.s.$$

- one-point estimate : martingale.
- two-point estimate : Interaction of flow lines.

Hao Wu (MIT, USA)

Intersections of SLE paths

● ▲ ■ ▶ ■ ∽ � ⊂ May 27 2014 18 / 24

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hao Wu (MIT, USA)

Proposition : [Miller, W.] The Hausdorff dimension of the double points of SLE_{κ} is, almost surely,

$$1+rac{\kappa}{8}-rac{6}{\kappa}$$
 for $\kappa\in(4,8)$
 $1+rac{2}{\kappa}$ for $\kappa\geq 8$

Proposition : [Miller, W.] The Hausdorff dimension of the cut points of SLE_{κ} is, almost surely,

$$3-rac{3\kappa}{8}$$
 for $\kappa\in(4,8)$

Radial SLE $_{\kappa}(\rho)$: $\kappa \in (0, 4), \rho \in (-2, \kappa/2 - 2)$

Radial SLE_{$$\kappa$$}(ρ) : $\kappa \in (0, 4), \rho \in (-2, \kappa/2 - 2)$

• *B_j* : the points on the boundary that the curve hits *j* times

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Radial SLE
$$_{\kappa}(\rho)$$
 : $\kappa \in (0, 4), \rho \in (-2, \kappa/2 - 2)$

- *B_j* : the points on the boundary that the curve hits *j* times
- Largest possible *j* :

$$\lceil \frac{\kappa}{2(2+
ho)}
ceil - 1$$

Hao Wu (MIT, USA)

Radial SLE_{$$\kappa$$}(ρ) : $\kappa \in (0, 4), \rho \in (-2, \kappa/2 - 2)$

- *B_j* : the points on the boundary that the curve hits *j* times
- Largest possible j :

$$\lceil \frac{\kappa}{2(2+\rho)} \rceil - 1$$

• dim_H(B_j) =

$$\frac{1}{2\kappa}\left(\kappa-2j(2+\rho)\right)\left(2+j(2+\rho)\right)$$

Radial SLE $_{\kappa}(\rho)$: $\kappa \in (0, 4), \rho \in (-2, \kappa/2 - 2)$

Hao Wu (MIT, USA)

Radial SLE_{$$\kappa$$}(ρ) : $\kappa \in (0, 4), \rho \in (-2, \kappa/2 - 2)$

• *I_j* : the points in the interior that the curve hits *j* times

イロト イヨト イヨト イヨト

Radial SLE_{$$\kappa$$}(ρ) : $\kappa \in (0, 4), \rho \in (-2, \kappa/2 - 2)$

- *I_j* : the points in the interior that the curve hits *j* times
- Largest possible *j* :

$$\lceil \frac{\kappa}{2(2+\rho)} \rceil$$

Hao Wu (MIT, USA)

Radial SLE_{$$\kappa$$}(ρ) : $\kappa \in (0, 4), \rho \in (-2, \kappa/2 - 2)$

- *I_j* : the points in the interior that the curve hits *j* times
- Largest possible *j* :

$$\lceil \frac{\kappa}{2(2+\rho)} \rceil$$

• dim_H(I_j) =

$$\frac{1}{8\kappa}(4{+}\kappa{+}2\rho{-}2j(2{+}\rho))(4{+}\kappa{-}2\rho{+}2j(2{+}\rho))$$

< ロ > < 同 > < 回 > < 回 >

K : conformal restriction sample with exponent $\beta \ge 5/8$:

$$\mathbb{P}(K \cap A = \emptyset) = \Phi'_{A}(0)^{\beta}$$

 $\Phi_{A}:\mathbb{H}\setminus A\to\mathbb{H},\,\Phi_{A}(\infty)=\infty,\Phi_{A}'(\infty)=1,\Phi_{A}(0)=0.$

K : conformal restriction sample with exponent $\beta \ge 5/8$:

$$\mathbb{P}(K \cap A = \emptyset) = \Phi'_{A}(0)^{\beta}$$

 $\Phi_{\boldsymbol{\mathcal{A}}}:\mathbb{H}\setminus\boldsymbol{\mathcal{A}}\rightarrow\mathbb{H},\,\Phi_{\boldsymbol{\mathcal{A}}}(\infty)=\infty,\Phi_{\boldsymbol{\mathcal{A}}}'(\infty)=1,\Phi_{\boldsymbol{\mathcal{A}}}(0)=0.$

• C(K): the cut points of K

= 900

K : conformal restriction sample with exponent $\beta \ge 5/8$:

$$\mathbb{P}(K \cap A = \emptyset) = \Phi'_{A}(0)^{\beta}$$

 $\Phi_{\boldsymbol{A}}:\mathbb{H}\setminus\boldsymbol{A}\rightarrow\mathbb{H},\,\Phi_{\boldsymbol{A}}(\infty)=\infty,\Phi_{\boldsymbol{A}}'(\infty)=1,\Phi_{\boldsymbol{A}}(0)=0.$

9. ...

 $\dim_{H}(C(K)) = (25 - u^{2})/12$ $u = \sqrt{24\beta + 1} - 1$

K : conformal restriction sample with exponent $\beta \ge 5/8$:

$$\mathbb{P}(K \cap A = \emptyset) = \Phi'_A(0)^{\beta}$$

 $\Phi_{\mathcal{A}}:\mathbb{H}\setminus \mathcal{A}\to\mathbb{H},\,\Phi_{\mathcal{A}}(\infty)=\infty,\Phi_{\mathcal{A}}'(\infty)=1,\Phi_{\mathcal{A}}(0)=0.$

• C(K) : the cut points of K

dim_H(C(K)) =
$$(25 - u^2)/12$$

 $u = \sqrt{24\beta + 1} - 1$

 Cut point dimension of Brownian excursion : 3/4 proved by Lawler, Schramm, Werner in 2001

Hao Wu (MIT, USA)

Intersections of SLE paths

May 27 2014 22 / 24

Miscellanies-KPZ formula

Boundary intersection dimension :

$$1-rac{1}{\kappa}(
ho+2)(
ho+4-rac{\kappa}{2})$$

Interior intersection dimension :

$$2-\frac{1}{2\kappa}(\rho+\frac{\kappa}{2}+2)(\rho-\frac{\kappa}{2}+6)$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Miscellanies-KPZ formula

x : Euclidean scaling exponent ; Δ : quantum scaling exponent

Boundary intersection dimension :

$$1 - rac{1}{\kappa}(
ho+2)(
ho+4-rac{\kappa}{2})$$

Interior intersection dimension :

$$2-\frac{1}{2\kappa}(\rho+\frac{\kappa}{2}+2)(\rho-\frac{\kappa}{2}+6)$$

$$x = \frac{\kappa}{4}\Delta^2 + (1 - \frac{\kappa}{4})\Delta$$

< ロ > < 同 > < 回 > < 回 >

Miscellanies–KPZ formula

- x : Euclidean scaling exponent;
- Δ : quantum scaling exponent

$$x = rac{\kappa}{4} \Delta^2 + (1 - rac{\kappa}{4}) \Delta$$

• Δ_b : boundary exponent is linear in ρ

Boundary intersection dimension :

$$1-rac{1}{\kappa}(
ho+2)(
ho+4-rac{\kappa}{2})$$

Interior intersection dimension :

$$2-\frac{1}{2\kappa}(\rho+\frac{\kappa}{2}+2)(\rho-\frac{\kappa}{2}+6)$$

Miscellanies-KPZ formula

Boundary intersection dimension :

$$1 - rac{1}{\kappa}(
ho+2)(
ho+4-rac{\kappa}{2})$$

Interior intersection dimension :

$$2-\frac{1}{2\kappa}(\rho+\frac{\kappa}{2}+2)(\rho-\frac{\kappa}{2}+6)$$

 Δ : quantum scaling exponent

$$x = \frac{\kappa}{4}\Delta^2 + (1 - \frac{\kappa}{4})\Delta$$

• Δ_b : boundary exponent is linear in ρ

•
$$\rho = -2 \sim \Delta_b = 0$$
 and $\rho = \kappa/2 - 2 \sim \Delta_b = 1$

Miscellanies-KPZ formula

Boundary intersection dimension :

$$1 - rac{1}{\kappa}(
ho+2)(
ho+4-rac{\kappa}{2})$$

Interior intersection dimension :

$$2-\frac{1}{2\kappa}(\rho+\frac{\kappa}{2}+2)(\rho-\frac{\kappa}{2}+6)$$

 Δ : quantum scaling exponent

$$x = \frac{\kappa}{4}\Delta^2 + (1 - \frac{\kappa}{4})\Delta$$

• Δ_b : boundary exponent is linear in ρ

< ロ > < 同 > < 回 > < 回 >

•
$$\rho = -2 \sim \Delta_b = 0$$
 and
 $\rho = \kappa/2 - 2 \sim \Delta_b = 1$

•
$$\Delta_b = 2(\rho + 2)/\kappa$$

Miscellanies–KPZ formula

Boundary intersection dimension :

$$1 - rac{1}{\kappa}(
ho+2)(
ho+4-rac{\kappa}{2})$$

Interior intersection dimension :

$$2-\frac{1}{2\kappa}(\rho+\frac{\kappa}{2}+2)(\rho-\frac{\kappa}{2}+6)$$

 Δ : quantum scaling exponent

$$x = \frac{\kappa}{4}\Delta^2 + (1 - \frac{\kappa}{4})\Delta$$

• Δ_b : boundary exponent is linear in ρ

< ロ > < 同 > < 回 > < 回 >

$$\Delta_b = 2(\rho + 2)/\kappa$$

 $\Delta_b \to X_b$

Miscellanies-KPZ formula

Boundary intersection dimension :

$$1 - rac{1}{\kappa}(
ho+2)(
ho+4-rac{\kappa}{2})$$

Interior intersection dimension :

$$2-\frac{1}{2\kappa}(\rho+\frac{\kappa}{2}+2)(\rho-\frac{\kappa}{2}+6)$$

 Δ : quantum scaling exponent

$$x = rac{\kappa}{4}\Delta^2 + (1 - rac{\kappa}{4})\Delta^2$$

- Δ_b : boundary exponent is linear in ρ
- $\rho = -2 \sim \Delta_b = 0$ and $\rho = \kappa/2 - 2 \sim \Delta_b = 1$ • $\Delta_b = 2(\rho + 2)/\kappa$ $\Delta_b \rightarrow x_b \rightarrow 1 - x_b$

イロト イポト イヨト イヨト 二日

Miscellanies–KPZ formula

Boundary intersection dimension :

$$1 - rac{1}{\kappa}(
ho+2)(
ho+4-rac{\kappa}{2})$$

Interior intersection dimension :

$$2-\frac{1}{2\kappa}(\rho+\frac{\kappa}{2}+2)(\rho-\frac{\kappa}{2}+6)$$

- x : Euclidean scaling exponent ;
- Δ : quantum scaling exponent

$$x = rac{\kappa}{4}\Delta^2 + (1 - rac{\kappa}{4})\Delta^2$$

- Δ_b : boundary exponent is linear in ρ
- $\rho = -2 \sim \Delta_b = 0$ and $\rho = \kappa/2 2 \sim \Delta_b = 1$

•
$$\Delta_b = 2(\rho + 2)/\kappa$$

 $\Delta_b \rightarrow x_b \rightarrow 1 - x_b$

• Δ_i : interior exponent $\Delta_i = \Delta_b/2 + 1/2$

Miscellanies-KPZ formula

Boundary intersection dimension :

$$1 - rac{1}{\kappa}(
ho+2)(
ho+4-rac{\kappa}{2})$$

Interior intersection dimension :

$$2-\frac{1}{2\kappa}(\rho+\frac{\kappa}{2}+2)(\rho-\frac{\kappa}{2}+6)$$

- x : Euclidean scaling exponent;
- Δ : quantum scaling exponent

$$x = rac{\kappa}{4}\Delta^2 + (1 - rac{\kappa}{4})\Delta^2$$

• Δ_b : boundary exponent is linear in ρ

• $\rho = -2 \sim \Delta_b = 0$ and $\rho = \kappa/2 - 2 \sim \Delta_b = 1$

•
$$\Delta_b = 2(\rho + 2)/\kappa$$

 $\Delta_b \rightarrow x_b \rightarrow 1 - x_b$

• Δ_i : interior exponent $\Delta_i = \Delta_b/2 + 1/2$ $\Delta_i \rightarrow x_i$

Miscellanies–KPZ formula

Boundary intersection dimension :

$$1 - rac{1}{\kappa}(
ho+2)(
ho+4-rac{\kappa}{2})$$

Interior intersection dimension :

$$2-\frac{1}{2\kappa}(\rho+\frac{\kappa}{2}+2)(\rho-\frac{\kappa}{2}+6)$$

- x : Euclidean scaling exponent;
- Δ : quantum scaling exponent

$$x = rac{\kappa}{4}\Delta^2 + (1 - rac{\kappa}{4})\Delta^2$$

- Δ_b : boundary exponent is linear in ρ
- $\rho = -2 \sim \Delta_b = 0$ and $\rho = \kappa/2 2 \sim \Delta_b = 1$

•
$$\Delta_b = 2(\rho + 2)/\kappa$$

 $\Delta_b \rightarrow x_b \rightarrow 1 - x_b$

• Δ_i : interior exponent $\Delta_i = \Delta_b/2 + 1/2$ $\Delta_i \to x_i \to 2 - 2x_i$

Thanks!

Hao Wu (MIT, USA)

Intersections of SLE paths

May 27 2014 24 / 24