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» Rényi & Szekeres ('67):
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where P (M* > x) =235, (n’x* — 1) e /2 x5 0.
» Szekeres ('82):
1

n

where P (A > x) = 3% (n? — 1)(,,2;4 — mx2 4 2)e"¥/8,

D(T,) = A, n—oo
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where (es)o<s<1 is the normalized Brownian excursion of length 1.

C(T,) = 2ein C([0,1]),

dQe(S: t)

=2(es + er — 21.(s, 1))
where I,(s,t

2e i
) = lnfsgugt €y

Brownian CRT
T = ([0,1]/ ~a, dac)
is a “tree-like” (random) compact

metric space.
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» Rényi & Szekeres:
1

ﬁl'(Tn) = M".
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» On the other hand,

I'(’Tb’) =2 sup es,
0<s<1

whose distribution has been deduced independently by
Kennedy, Chung, Durrett et al. in the 70s.
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» For a tree T with its contour function (Cs,0 < s < 1),

D(T)= sup de(s,t)= sup (Cs +Ct — 2le(s, t))

0<s<t<1 0<s<t<1

» Aldous’ Theorem:

1 br
ﬁT =T
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» In consequence,

1
—D(T, D(7").
Z=D(T;) = D(T?)
» Szekeres:

\%D(Tn) — A
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a question of Aldous

» We must have

D(T") £ A,

where A is the limit distribution of %D(Tn), given by

00 4.4
P(A > X) — Z(n2_1) (172;( _ n2X2 + 2) e_n2X2/8, x > 0.

n=1

» Aldous (CRT II, '91): Can we deduce the distribution of

D(Tbr) =2 sup (es + et — 2le(s, t))

0<s<t<1

from the Brownian excursion itself?
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proof on a picture: third case
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F then d(ug, p) = T(T)

Vo

w
>l_/¢ Suppose that d(w, p) > d(ug, p)
) then d(w, vo) > d(vo, uo)
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first observation
> Let T be a tree rooted at p. If ug, vp € T such that
d(UO, VO) = D(T)7 d(Uo,p) > d(VO,p),

then
d(uo, p) = F(T).

» By the properties of the Brownian excursion, there exists
almost surely a unique point sy such that

F(7P°) =2 sup e = 2eq,.
0<s<1

» Therefore, almost surely,

D(Tbr): sup dae(s,t) = sup dae(S0,t).

0<s<t<1 0<t<1



Distribution of the diameter of 7%

Williams' decomposition

» Let ny be the Ito’s excursion measure on C(R4,R;). Let
(ws, 0 < s < () be the coordinate process.

> Under n,, there exists a unique point sp such that

Wsy = SUP Ws.
0<s<(¢

» Under n; and given wg, = c,
(ws,0<s<s) and (we—s,0<5<(—50)

are distributed as two independent BES3(0) processes which
run until hitting c.
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Williams' decomposition: a representation by tree

Under ny(:|F(T) = ¢),

> b

i>1

is a Poisson point measure of intensity
dt cNe—¢

where ny, = n (:|F(T") < a) is the restriction of ny on {[(T) < a}.
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calculation

Notice that ( = 35, (;. Then, for A>0and y > c,

1 (e 1 o0r)on |F(T) =€) = E[ [T e 1 irmyic-nzn]
i>1

= exp <—/ dt - nc—t<1 - e_)\cl{l'(’f)—kc—tﬁy}))
0

V22 X\sinh?((y—c)v/2X)
_ { sinh*(y4/A/2) » ¥y <2
V2c2)
sinh2(:::\/ﬁ)7 y =z 2c.

Here, we have used the fact that
ni(1— e 1r(r)<ay) = VA/2coth(av2))

(& n(eIN(T) = 2) = (52255))).
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calculation

By integrating with respect to ny(I(7) > ¢) = 1/(2c¢), we find
that for each y > 0,

ny (e_Acl{D(T)>y}> = VA2 (Coth(\/mw - 1)
(VaTsean(/a72) -

1 Ay
- sinh®(\/A/2y) 4sinh2(\/my)> ‘
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spinal decomposition along the height

Since (¢71/2 - wse)o<s<1 = (es)o<s<1,
¢Y2.D(T) £ D(T™)/2
Therefore,
ne (6™ 1oy
_ /e_)‘XnJr(C e dx) P (VxD(T™)/2> y).
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conclusion
By the inverse Laplace transform and the fact that
ny (¢ € dx) = (2v27x3)~Ldx, we find

s 4 4
P (D(Tbl‘) > y> — Z(n271) <n _y o n2y2 +2> e—”2y2/8,

24

n=1

y > 0.
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conclusion
By the inverse Laplace transform and the fact that
ny (¢ € dx) = (2v27x3)~Ldx, we find

o0 4.4
P(D(T") > y) = Y (n*-1) <”QX — Pyt 2> ey >0

n=1

Recall Jacobi's identity on the theta function:

if  0(x)= i e_”27rx, then /x0(x) = 0(x71)

n—=—oo

for each x > 0. It follows that
=, /1024
P (D(Tbr) > y) = 1-2%7/275/2),-9 Z (—3 tn* — 2472 n?y?
=1

2 1
e Y —y4) o—04m2n?/y?

3 2 , y>0.
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» We have calculated n; (e"\Cl{D(T)Sy}‘I'(T) = c).

» By integration, we find an expression for
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» By the scaling property,
Y
n+<e Cl{D(T)>y,F(7’)>z})
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Other consequences
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We have calculated ny (e"\Cl{D(T)Sy}‘I'(T) = c).

v

v

By integration, we find an expression for

ny (G_A<1{0(7)>y, F(T)>z})-
By the scaling property,

v

ny (e_kcl{n(7)>y, F(T)>z})
- /e_’\xn+(C € dx)- P (\/Q D(T?)/2 > y,v/xF(T?)/2 > z) .

We deduce for m+n > 1,

2(m+n)/2 [D(Tbr)m r(Tbr) m+n ——Y / du//2 dv u™v"

“sinh(2(u—v)) — 2smh2(u —v) coth(u/2).
sinh*(u/2)

v
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Other consequences

decomposition along the diameter of 7%

» We obtain a spinal decomposition along the diameter of T
under ny.

» By the scaling property, we deduce a spinal decomposition
along the diameter of 7%, which can be written as a
conditioned Poisson point measure.



Generalization

> Lévy trees are the scaling limits of Galton-Watson trees,
generalizing the Brownian CRT:
» A decomposition along the diameter of a Lévy tree under the
excursion measure.

» An important subclass: stable tree:
» Laplace transforms for the height and the diameter of a stable

tree;
» Asymptotics of the probabilities for the height (resp. diameter)

to be large.



Thank you!
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