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Motivation
limit theorems for height and diameter

I Let n ≥ 1. There are nn−1 rooted trees on vertices 1, 2, · · · , n
(Cayley, 1889).
Let Tn be a uniformly picked tree.

I Endow each edge with length 1.
Γ(Tn) = maximal height of Tn D(Tn) = diameter of Tn

I Rényi & Szekeres (’67):

1√
n

Γ(Tn) =⇒ M∗, n→∞

where P (M∗ > x) = 2
∑∞

n=1

(
n2x2 − 1

)
e−n

2x2/2, x > 0.

I Szekeres (’82):

1√
n

D(Tn) =⇒ ∆, n→∞

where P (∆ > x) =
∑∞

n=1(n2 − 1)(n
4x4

24 − n2x2 + 2)e−n
2x2/8.
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Motivation
limit theorem for trees

Aldous’ Theorem (’91):

1√
n
C(Tn) =⇒ 2e in C([0, 1]),

where (es)0≤s≤1 is the normalized Brownian excursion of length 1.
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Motivation
limit theorem for trees

Aldous’ Theorem (’91):

1√
n
C(Tn) =⇒ 2e in C([0, 1]),

where (es)0≤s≤1 is the normalized Brownian excursion of length 1.

0 1

2e d2e(s, t) = 2(es + et − 2Ie(s, t))
where Ie(s, t) = infs≤u≤t eu

T br := ([0, 1]/ ∼d, d2e)
is a “tree-like” (random) compact

metric space.

Brownian CRT



Motivation
limit theorems

I For a tree T with its contour function (Cs , 0 ≤ s ≤ 1),

Γ(T ) = sup
0≤s≤1

dC(0, s) = sup
0≤s≤1

(
Cs+C0−2IC(0, s)

)
= sup

0≤s≤1
Cs .

I Aldous’ Theorem:
1√
n
Tn =⇒ T br ,

in the sense that 1√
n
C(Tn) =⇒ C(T br ) in C([0, 1]).

I In consequence,

1√
n

Γ(Tn) =⇒ Γ(T br ).

I Rényi & Szekeres:

1√
n

Γ(Tn) =⇒ M∗.
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Motivation
distribution of Γ(T br )

I We must have
Γ(T br )

d
= M∗,

where M∗ is the limit distribution of 1√
n

Γ(Tn), given by

P (M∗ > x) = 2
∞∑
n=1

(
n2x2 − 1

)
e−n

2x2/2, x > 0.

I On the other hand,

Γ(T br ) = 2 sup
0≤s≤1

es ,

whose distribution has been deduced independently by
Kennedy, Chung, Durrett et al. in the 70s.
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Motivation
a question of Aldous

I We must have
D(T br )

d
= ∆,

where ∆ is the limit distribution of 1√
n

D(Tn), given by

P (∆ > x) =
∞∑
n=1

(n2−1)

(
n4x4

24
− n2x2 + 2

)
e−n

2x2/8, x > 0.

I Aldous (CRT II, ’91): Can we deduce the distribution of

D(T br ) = 2 sup
0≤s≤t≤1

(
es + et − 2Ie(s, t)

)
from the Brownian excursion itself?
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Distribution of the diameter of T br

proof on a picture: second case

d(u0, v0) = D(T )

d(u0, ρ) ≥ d(v0, ρ)
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Distribution of the diameter of T br

proof on a picture: third case

d(u0, v0) = D(T )

d(u0, ρ) ≥ d(v0, ρ)

then d(u0, ρ) = Γ(T )

Suppose that d(w, ρ) > d(u0, ρ)

u0

v0

ρ

T

w

then d(w, v0) > d(v0, u0)



Distribution of the diameter of T br

first observation

I Let T be a tree rooted at ρ. If u0, v0 ∈ T such that

d(u0, v0) = D(T ), d(u0, ρ) ≥ d(v0, ρ),

then
d(u0, ρ) = Γ(T ).

I By the properties of the Brownian excursion, there exists
almost surely a unique point s0 such that

Γ(T br ) = 2 sup
0≤s≤1

es = 2es0 .

I Therefore, almost surely,

D(T br ) = sup
0≤s≤t≤1

d2e(s, t) = sup
0≤t≤1

d2e(s0, t).
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Distribution of the diameter of T br

Williams’ decomposition

I Let n+ be the Ito’s excursion measure on C(R+,R+). Let
(ωs , 0 ≤ s ≤ ζ) be the coordinate process.

I Under n+, there exists a unique point s0 such that

ωs0 = sup
0≤s≤ζ

ωs .

I Under n+ and given ωs0 = c,

(ωs , 0 ≤ s ≤ s0) and (ωζ−s , 0 ≤ s ≤ ζ − s0)

are distributed as two independent BES3(0) processes which
run until hitting c .
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Williams’ decomposition

ρ

u0

0

ω

s0

`i `i

Ti T

Ti

ζi



Distribution of the diameter of T br

Williams’ decomposition: a representation by tree

Under n+(·|Γ(T ) = c), ∑
i≥1

δ(`i ,Ti )

is a Poisson point measure of intensity

dt · nc−t

where na = n+(·|Γ(T ) < a) is the restriction of n+ on {Γ(T ) < a}.



Distribution of the diameter of T br

observation on the diameter

D(T )= supi≥1 (Γ(Ti) + c− `i)

u0

ρ

c− `i

T

Ti



Distribution of the diameter of T br

calculation

Notice that ζ =
∑

i≥1 ζi . Then, for λ > 0 and y > c ,

n+

(
e−λζ1{D(T )≤y}

∣∣∣Γ(T ) = c
)

= E
[∏
i≥1

e−λζi 1{Γ(Ti )+c−`i≤y}

]
= exp

(
−
∫ c

0
dt · nc−t

(
1− e−λζ1{Γ(T )+c−t≤y}

))

=


√

2c2λ sinh2((y−c)
√

2λ)

sinh4(y
√
λ/2)

, y < 2c
√

2c2λ
sinh2(c

√
2λ)
, y ≥ 2c .

Here, we have used the fact that
n+(1− e−λζ1{Γ(T )<a}) =

√
λ/2 coth(a

√
2λ)

(⇔ n+(e−λζ |Γ(T ) = a) =
(

a
√

2λ
sinh(a

√
2λ)

)2
).



Distribution of the diameter of T br

calculation

By integrating with respect to n+(Γ(T ) > c) = 1/(2c), we find
that for each y > 0,

n+

(
e−λζ1{D(T )>y}

)
=
√
λ/2

(
coth(

√
λ/2y)− 1

)
− 1

sinh2(
√
λ/2y)

(√
λ/8 coth(

√
λ/2y)− λy

4 sinh2(
√
λ/2y)

)
.



Distribution of the diameter of T br

spinal decomposition along the height

Since (ζ−1/2 · ωsζ)0≤s≤1
d
= (es)0≤s≤1,

ζ−1/2 ·D(T )
d
= D(T br )/2.

Therefore,

n+

(
e−λζ1{D(T )>y}

)
=

∫
e−λxn+(ζ ∈ dx) · P

(√
x D(T br )/2 > y

)
.



Distribution of the diameter of T br

conclusion

By the inverse Laplace transform and the fact that
n+(ζ ∈ dx) = (2

√
2πx3)−1dx , we find

P
(

D(T br ) > y
)

=
∞∑
n=1

(n2−1)

(
n4y4

24
− n2y2 + 2

)
e−n

2y2/8, y > 0.

Recall Jacobi’s identity on the theta function:

if θ(x) =
∞∑

n=−∞
e−n

2πx , then
√
xθ(x) = θ(x−1)

for each x > 0. It follows that

P
(

D(T br ) > y
)

= 1−237/2π5/2y−9
∞∑
n=1

(1024

3
π4n4 − 24π2n2y2

+
2

3
π2n2y4 +

1

4
y4
)
e−64π2n2/y2

, y > 0.
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Other consequences
joint law of Γ(T br ) and D(T br )

I We have calculated n+

(
e−λζ1{D(T )≤y}

∣∣∣Γ(T ) = c
)
.

I By integration, we find an expression for

n+

(
e−λζ1{D(T )>y , Γ(T )>z}

)
.

I By the scaling property,

n+

(
e−λζ1{D(T )>y , Γ(T )>z}

)
=

∫
e−λxn+(ζ ∈ dx) · P

(√
x D(T br )/2 > y ,

√
x Γ(T br )/2 > z

)
.

I We deduce for m + n > 1,

2(m+n)/2 · E
[
D(T br )m · Γ(T br )n

]
=

2
√
π

Γ(m+n−1
2 )

∫ ∞
0

du

∫ u

u/2
dv umvn

· sinh(2(u − v))− 2 sinh2(u − v) coth(u/2)

sinh4(u/2)
.



Other consequences
joint law of Γ(T br ) and D(T br )

I We have calculated n+

(
e−λζ1{D(T )≤y}

∣∣∣Γ(T ) = c
)
.

I By integration, we find an expression for

n+

(
e−λζ1{D(T )>y , Γ(T )>z}

)
.

I By the scaling property,

n+

(
e−λζ1{D(T )>y , Γ(T )>z}

)
=

∫
e−λxn+(ζ ∈ dx) · P

(√
x D(T br )/2 > y ,

√
x Γ(T br )/2 > z

)
.

I We deduce for m + n > 1,

2(m+n)/2 · E
[
D(T br )m · Γ(T br )n

]
=

2
√
π

Γ(m+n−1
2 )

∫ ∞
0

du

∫ u

u/2
dv umvn

· sinh(2(u − v))− 2 sinh2(u − v) coth(u/2)

sinh4(u/2)
.



Other consequences
joint law of Γ(T br ) and D(T br )

I We have calculated n+

(
e−λζ1{D(T )≤y}

∣∣∣Γ(T ) = c
)
.

I By integration, we find an expression for

n+

(
e−λζ1{D(T )>y , Γ(T )>z}

)
.

I By the scaling property,

n+

(
e−λζ1{D(T )>y , Γ(T )>z}

)
=

∫
e−λxn+(ζ ∈ dx) · P

(√
x D(T br )/2 > y ,

√
x Γ(T br )/2 > z

)
.

I We deduce for m + n > 1,

2(m+n)/2 · E
[
D(T br )m · Γ(T br )n

]
=

2
√
π

Γ(m+n−1
2 )

∫ ∞
0

du

∫ u

u/2
dv umvn

· sinh(2(u − v))− 2 sinh2(u − v) coth(u/2)

sinh4(u/2)
.



Other consequences
joint law of Γ(T br ) and D(T br )

I We have calculated n+

(
e−λζ1{D(T )≤y}

∣∣∣Γ(T ) = c
)
.

I By integration, we find an expression for

n+

(
e−λζ1{D(T )>y , Γ(T )>z}

)
.

I By the scaling property,

n+

(
e−λζ1{D(T )>y , Γ(T )>z}

)
=

∫
e−λxn+(ζ ∈ dx) · P

(√
x D(T br )/2 > y ,

√
x Γ(T br )/2 > z

)
.

I We deduce for m + n > 1,

2(m+n)/2 · E
[
D(T br )m · Γ(T br )n

]
=

2
√
π

Γ(m+n−1
2 )

∫ ∞
0

du

∫ u

u/2
dv umvn

· sinh(2(u − v))− 2 sinh2(u − v) coth(u/2)

sinh4(u/2)
.



Other consequences
decomposition along the diameter of T br

a spinal decomposition along the maximal height of T under n+

u0

ρ

v0

Ti0



Other consequences
decomposition along the diameter of T br

u0

ρ

v0

Ti0

a spinal decomposition along the maximal height of Ti0 under nc−`i
u0

ρ

v0

Ti0



Other consequences
decomposition along the diameter of T br

I We obtain a spinal decomposition along the diameter of T
under n+.

I By the scaling property, we deduce a spinal decomposition
along the diameter of T br , which can be written as a
conditioned Poisson point measure.



Other consequences
decomposition along the diameter of T br

I We obtain a spinal decomposition along the diameter of T
under n+.

I By the scaling property, we deduce a spinal decomposition
along the diameter of T br , which can be written as a
conditioned Poisson point measure.



Generalization

I Lévy trees are the scaling limits of Galton-Watson trees,
generalizing the Brownian CRT:

I A decomposition along the diameter of a Lévy tree under the
excursion measure.

I An important subclass: stable tree:
I Laplace transforms for the height and the diameter of a stable

tree;
I Asymptotics of the probabilities for the height (resp. diameter)

to be large.



Thank you!
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