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What is heat equation?
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A FEW MINUTES FOR PHYSICS

What is heat equation?

. J(x,t

t > 0 : heat transfer (_))

° ; ®
T(x,t)

oT  3J
ot Ox

FOURIER LAW (1822):

oT
060 = ~D(T)==(x,0)

D = diffusion coefficient
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I. MICROSCOPIC MODEL

Chain of N harmonic coupled oscillators on the torus

TN:{].,...,N} OEN

Dy . momentum of atom X,
r, : distance between x etx+ 1,
m, : mass of atom x.
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I. MICROSCOPIC MODEL

Chain of N harmonic coupled oscillators on the torus

TN:{].,...,N} OEN

Dy . momentum of atom X,
r, : distance between x etx+ 1,
m, : mass of atom x.

Total energy = “temperature”

Hz{
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X
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Hamiltonian dynamics

> Question: Evolution in time of the configurations {r,,p,} ?
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Hamiltonian dynamics

> Question: Evolution in time of the configurations {r,,p,} ?

> Newton equations

% — Px+1 _ Px

dt m m .
xtl x = Random environment {m,}

> Conserved quantities

D B wE{E

2m,

> Number of particules? ... N « 10%* (Avogadro) I
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Boltzmann idea!

Atomic description = Macroscopic description

We define ,uItV (dr, dp) as the probability law at time t on the space

Qy :=RY x RY = positions x momenta
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Boltzmann idea!

Atomic description = Macroscopic description
We define ,uItV (dr, dp) as the probability law at time t on the space

Qy :=RY xRN = positions x momenta

Equilibrium states? Invariant measures:
> If there is only one conserved quantity (the energy) the invariant
measures are the Gibbs measures defined as

1 & e
N — | | _x
Py

> One parameter T > 0, called temperature, and e, := ) +
mX

\S] |><ﬁm
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Stochastic perturbation
of the dynamics

Stefano Olla S.R.S Varadhan
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II. LET’S MAKE NOISE!

We add a stochastic noise = provides ergodicity
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II. LET’S MAKE NOISE!

We add a stochastic noise = provides ergodicity

Each atom x waits independently a random Poissonian time
and then flips p, into —p,..
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Another stochastic perturbation...

@ which conserves the total momentum Z Dy
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Another stochastic perturbation...
@ which conserves the total momentum Z Dy

> Momentum exchange with constant masses:
after random Poissonian times,

Px < Px+1

® which is “less degenerate”
> Strong exchange: after random Poissonian times,

Dx
T

Wi *

P 2
Both still conserve Z { > X + X }
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Final dynamics
> Deterministic part

e Two many conserved quantities
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Final dynamics
> Deterministic part
e Two many conserved quantities
* Re-written in terms of a generator of a semi-group Ay

e m = random environment (masses)

> Stochastic part

e Given by a generator of a Markov process Sy

Destroy the conservation of »_p,

= NORMAL DIFFUSION

Sufficient to know “all” the invariant measures

= ERGODICITY

Still degenerate... No spectral gap!
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What’s important?
(1) {rx(t),px(t) ; XE TN} o is a Markov process on (R x R)V.
t=

Denote by ,u’t\’ the law of that process.
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What’s important?

(1) {rx(t),px(t) ; XE TN} o is a Markov process on (R x R)V.
t=

Denote by ,ult\’ the law of that process.

® The density f of the law p!" satisfies the Fokker-Planck
equation

off
'

where £ = —AY + vSy and y > 0 is the noise intensity.

Ly

® The only “relevant” invariant measures are the Gibbs
measures

N

1 e
N(dr,dp) 1= —— (——")d dp..
iy (dr, dp) Z(T)Qexp 7 ) drxdpx
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ITI. ENERGY FLUCTUATIONS

Gibbs measures:

1 N
N o—
b dp) = s [ e xp (2 ) drcp,
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III. ENERGY FLUCTUATIONS

Gibbs measures:
1 N
N .
uhandp) = s Tewp xp (2 ) drcp,

Consequence of CLT

If {r,,p,} are distributed according to u’}] then

W)= %isxm(-) {ec—T}

converges in law towards a Gaussian field.

Precisely: If F, G are smooth functions,
1

<yN(F) yN(G)>T v ZTzf F(u)G(u)du

0
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And when time evolves?

Energy fluctuation field

1 N
N(Y = — ) 6, /8() 1e, (tN?) —
A «/N;:l () {ec(ev®) -7}
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Two results

Let F and G be smooth functions,

<y£V(F) yéV(G)>T PV 212 Jj F(w)G(v)P,(u — v)dudv
(0¢] Rz

where P, is the semi-group associated to D- A where
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Let F and G be smooth functions,

Two results

<y£V(F) yf)V(G)>T PV 212 JJ F(w)G(v)P,(u — v)dudv
o0 Rz

where P, is the semi-group associated to D- A where

1. Constant masses + flip of intensity y

1
D(y) = E

[S. 2013]

2. Random masses + flip(y) + strong exchange(A)

0 <D(y,A) <+o0

[S. 2014]
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What about D(y, 1)?
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What about D(y, 1)?

@ Does not depend on the realization of masses

... only on moments E[m,], E[m2], ...

® Defined through energy currents

/ . . . . ._ _
ex(t) =Jx—1x TJxx+1 with Jxx+1 = Pl = current.

© Has to satisfy

Jt Z [jx,x+1 - {D(Y, Aext1 —ex) + L7(Tyf) }] ds
0

x€T L
N fluctuation—dissipation

L™ = generator of the dynamics

15/18



What about D(y, 1)?

@ Does not depend on the realization of masses

... only on moments E[m,], E[m2], ...

® Defined through energy currents

/ . . . . ._ _
ex(t) =Jx—1x TJxx+1 with Jxx+1 = Pl = current.

© Has to satisfy

t 2
U 2. [ers = {PO A e —ed + L7z} | ds)
0

x€Ty

15/18



What about D(y, 1)?

@ Does not depend on the realization of masses

... only on moments E[m,], E[m2], ...

® Defined through energy currents

/ . . . . ._ _
ex(t) =Jx—1x TJxx+1 with Jxx+1 = Pl = current.

© Has to satisfy

t 2
<( J Z [fx:xﬂ—{D(M)(exﬂ—ex)+£m(rxf)}]ds) >
’ T

x€Ty

15/18



What about D(y, 1)?

@ Does not depend on the realization of masses

... only on moments E[m,], E[m2], ...

® Defined through energy currents

/ . . . . ._ _
ex(t) =Jx—1x TJxx+1 with Jxx+1 = Pl = current.

© Has to satisfy

t 2
Em<( J > [jx,xﬂ—{n(y,x)(em—ex)+£m(rxf)}]ds) >
0 T

x€Ty

15/18



What about D(y, 1)?

@ Does not depend on the realization of masses
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® Defined through energy currents

/ . . . . '_ _
ex(t) =Jx—1x TJxx+1 with Jxx+1 = Pl = current.

© Has to satisfy

t 2
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@ Does not depend on the realization of masses

... only on moments E[m,], E[m2], ...

® Defined through energy currents

/ . . . . '_ _
ex(t) =Jx—1x TJxx+1 with Jxx+1 = Pl = current.

© Has to satisfy

t 2
Em<( J > [jx,xﬂ—{n(y,x)(exﬂ—ex)+£m(rxf)}]ds) >
0 T

x€Ty

1
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Non-gradient method... revisited

In other words:

We construct a norm || - || and a Hilbert space H which contains
jO,l such that

H={e;—e}®{Lf}
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Non-gradient method... revisited

In other words:

We construct a norm || - || and a Hilbert space H which contains
jO,l such that

H={e;—e}®{Lf}

Needed tools:

(i) Norm related to (—=S)™' > Speetral-gap

(ii) Replacing £ with S >  Sector condition weakened

> only with the strong exchange
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Going further!
@ Green-Kubo formula for D(y,A) [S.2013]
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Going further!
@ Green-Kubo formula for D(y,A) [S.2013]

> the two definitions are equivalent Vv
> D(y,4) —D(y,0) v D(y, ) — ?? Open!
— N
® Next step = Hydrodynamic limits

> Starting with a local equilibrium measure

> Proving the Fourier law

de(x,t) ) D( )ae
= — e)—
at ox Jx
> Harmonic chain with constant masses + flip N4 [S. 2013]
Harmonic chain with random masses Open!

® Cases of anomalous diffusion [S. Bernardin Goncalves Jara *14]
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Thank you for your attention!
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