ENERGY FLUCTUATIONS IN THE DISORDERED HARMONIC CHAIN

> Marielle Simon, École Normale Supérieure de Lyon

Young Women In Probability Bonn, May 2014

Diffusive behavior and heat transport

Ludwig Boltzmann [1844-1906]

Joseph Fourier [1768-1830]

A few minutes for physics

What is heat equation?

A few minutes for physics

What is heat equation?

Initially: $T_0(x) =$ **temperature**

What is heat equation?

What is heat equation?

FOURIER LAW (1822):

$$\mathcal{J}(x,t) = -\mathbf{D}(T)\frac{\partial T}{\partial x}(x,t)$$

D = diffusion coefficient

Chain of N harmonic coupled oscillators on the torus

$$\mathbb{T}_N = \{1, \dots, N\} \qquad 0 \equiv N$$

- p_x : momentum of atom *x*,
- r_x : distance between *x* et *x* + 1,
- m_x : mass of atom x.

Chain of N harmonic coupled oscillators on the torus

$$\mathbb{T}_N = \{1, \dots, N\} \qquad 0 \equiv N$$

- p_x : momentum of atom *x*,
- r_x : distance between *x* et *x* + 1,
- m_x : mass of atom x.

Total energy = "temperature"

$$\mathcal{H} := \sum_{x} \left\{ \frac{p_x^2}{2m_x} + \frac{r_x^2}{2} \right\} = \sum_{x} e_x.$$

▷ **Question:** Evolution in time of the configurations $\{r_x, p_x\}$?

- ▷ **Question:** Evolution in time of the configurations $\{r_x, p_x\}$?
- ▷ Newton equations

$$\begin{cases} \frac{\mathrm{d}r_x}{\mathrm{d}t} = \frac{p_{x+1}}{m_{x+1}} - \frac{p_x}{m_x}\\ \frac{\mathrm{d}p_x}{\mathrm{d}t} = r_x - r_{x-1} \end{cases}$$

- ▷ **Question:** Evolution in time of the configurations $\{r_x, p_x\}$?
- ▷ Newton equations

$$\begin{cases} \frac{\mathrm{d}r_x}{\mathrm{d}t} = \frac{p_{x+1}}{m_{x+1}} - \frac{p_x}{m_x} \\ \frac{\mathrm{d}p_x}{\mathrm{d}t} = r_x - r_{x-1} \end{cases} \Rightarrow \text{ Random environment } \{m_x\}$$

- ▷ **Question:** Evolution in time of the configurations $\{r_x, p_x\}$?
- Newton equations

$$\begin{cases} \frac{\mathrm{d}r_x}{\mathrm{d}t} = \frac{p_{x+1}}{m_{x+1}} - \frac{p_x}{m_x} \\ \frac{\mathrm{d}p_x}{\mathrm{d}t} = r_x - r_{x-1} \end{cases} \Rightarrow \text{Random environment } \{m_x\}$$

Conserved quantities

$$\sum p_x \qquad \sum r_x \qquad \mathcal{H} := \sum \left\{ \frac{p_x^2}{2m_x} + \frac{r_x^2}{2} \right\} \quad \dots$$

- ▷ **Question:** Evolution in time of the configurations $\{r_x, p_x\}$?
- Newton equations

$$\begin{cases} \frac{\mathrm{d}r_x}{\mathrm{d}t} = \frac{p_{x+1}}{m_{x+1}} - \frac{p_x}{m_x} \\ \frac{\mathrm{d}p_x}{\mathrm{d}t} = r_x - r_{x-1} \end{cases} \Rightarrow \text{Random environment } \{m_x\}$$

Conserved quantities

$$\sum p_x \qquad \sum r_x \qquad \mathcal{H} := \sum \left\{ rac{p_x^2}{2m_x} + rac{r_x^2}{2}
ight\} \quad ...$$

▷ Number of particules? ... $N \propto 10^{23}$ (Avogadro) !!

Boltzmann idea!

Atomic description ⇒ *Macroscopic* description

We define $\mu_t^N(d\mathbf{r}, d\mathbf{p})$ as the probability law at time *t* on the space

 $\Omega_N := \mathbb{R}^N \times \mathbb{R}^N = \text{ positions } \times \text{ momenta}$

Boltzmann idea!

Atomic description ⇒ *Macroscopic* description

We define $\mu_t^N(d\mathbf{r}, d\mathbf{p})$ as the probability law at time *t* on the space

 $\Omega_N := \mathbb{R}^N \times \mathbb{R}^N = \text{ positions } \times \text{ momenta}$

Equilibrium states?

Boltzmann idea!

Atomic description ⇒ *Macroscopic* description

We define $\mu_t^N(d\mathbf{r}, d\mathbf{p})$ as the probability law at time *t* on the space

 $\Omega_N := \mathbb{R}^N \times \mathbb{R}^N = \text{ positions } \times \text{ momenta}$

Equilibrium states? Invariant measures:

▷ If there is only one conserved quantity (the *energy*) the invariant measures are the **Gibbs measures** defined as

$$\mu_T^N(\mathrm{d}\mathbf{r},\mathrm{d}\mathbf{p}) := \frac{1}{Z(T)} \prod_{x=1}^N \exp\left(-\frac{e_x}{T}\right) \mathrm{d}r_x \mathrm{d}p_x.$$

▷ One parameter *T* > 0, called *temperature*, and $e_x := \frac{p_x^2}{2m_x} + \frac{r_x^2}{2}$

Stochastic perturbation of the dynamics

Stefano Olla

S.R.S Varadhan

Н.Т. Үаи

We add a **stochastic noise** \Rightarrow provides ergodicity

We add a **stochastic noise** \Rightarrow provides ergodicity

Each atom x waits independently a random Poissonian time and then flips p_x into $-p_x$.

1 which conserves the total momentum $\sum p_x$

1 which conserves the total momentum $\sum p_x$

Momentum exchange with constant masses: after random Poissonian times,

 $p_x \longleftrightarrow p_{x+1}$

1 which conserves the total momentum $\sum p_x$

Momentum exchange with constant masses: after random Poissonian times,

 $p_x \longleftrightarrow p_{x+1}$

2 which is "less degenerate"

1 which conserves the total momentum $\sum p_x$

Momentum exchange with constant masses: after random Poissonian times,

$$p_x \leftrightarrow p_{x+1}$$

2 which is "less degenerate"

▷ Strong exchange: after random Poissonian times,

$$\frac{p_x}{\sqrt{m_x}} \leftrightarrow r_x$$

1 which conserves the total momentum $\sum p_x$

Momentum exchange with constant masses: after random Poissonian times,

$$p_x \longleftrightarrow p_{x+1}$$

- 2 which is "less degenerate"
 - ▷ Strong exchange: after random Poissonian times,

$$\frac{p_x}{\sqrt{m_x}} \leftrightarrow r_x$$

Both still conserve
$$\sum \left\{ \frac{p_x^2}{2m_x} + \frac{r_x^2}{2} \right\}$$

▷ Deterministic part

• Two many conserved quantities

▷ Deterministic part

- Two many conserved quantities
- Re-written in terms of a generator of a semi-group $\mathcal{A}_N^{\mathbf{m}}$

▷ Deterministic part

- Two many conserved quantities
- Re-written in terms of a generator of a semi-group $\mathcal{A}_N^{\mathbf{m}}$
- **m** = random environment (masses)

Deterministic part

- Two many conserved quantities
- Re-written in terms of a generator of a semi-group $\mathcal{A}_N^{\mathbf{m}}$
- **m** = random environment (masses)

▷ Stochastic part

• Given by a generator of a **Markov** process S_N

Deterministic part

- Two many conserved quantities
- Re-written in terms of a generator of a semi-group $\mathcal{A}_N^{\mathbf{m}}$
- **m** = random environment (masses)

▷ Stochastic part

- Given by a generator of a **Markov** process S_N
- Destroy the conservation of $\sum p_x$ \Rightarrow NORMAL DIFFUSION

Deterministic part

- Two many conserved quantities
- Re-written in terms of a generator of a semi-group $\mathcal{A}_N^{\mathbf{m}}$
- **m** = random environment (masses)

▷ Stochastic part

- Given by a generator of a **Markov** process S_N
- Destroy the conservation of $\sum p_x$ \Rightarrow NORMAL DIFFUSION
- Sufficient to know "all" the invariant measures
 - \Rightarrow Ergodicity

Deterministic part

- Two many conserved quantities
- Re-written in terms of a generator of a semi-group $\mathcal{A}_N^{\mathbf{m}}$
- **m** = random environment (masses)

▷ Stochastic part

- Given by a generator of a **Markov** process S_N
- Destroy the conservation of $\sum p_x$ \Rightarrow NORMAL DIFFUSION
- Sufficient to know "all" the invariant measures
 ⇒ ERGODICITY
- Still degenerate... No spectral gap!

1 $\left\{ r_x(t), p_x(t) ; x \in \mathbb{T}_N \right\}_{t \ge 0}$ is a Markov process on $(\mathbb{R} \times \mathbb{R})^N$. Denote by μ_t^N the law of that process.

- 1 $\left\{ r_x(t), p_x(t) ; x \in \mathbb{T}_N \right\}_{t \ge 0}$ is a Markov process on $(\mathbb{R} \times \mathbb{R})^N$. Denote by μ_t^N the law of that process.
- 2 The density f_t^N of the law μ_t^N satisfies the Fokker-Planck equation

$$\frac{\partial f_t^N}{\partial t} = \mathcal{L}_N^{\mathbf{m}} f_t^N$$

where $\mathcal{L}_N^{\mathbf{m}} = -\mathcal{A}_N^{\mathbf{m}} + \gamma \mathcal{S}_N$ and $\gamma > 0$ is the noise intensity.

- 1 $\left\{ r_x(t), p_x(t) ; x \in \mathbb{T}_N \right\}_{t \ge 0}$ is a Markov process on $(\mathbb{R} \times \mathbb{R})^N$. Denote by μ_t^N the law of that process.
- 2 The density f_t^N of the law μ_t^N satisfies the Fokker-Planck equation

$$\frac{\partial f_t^N}{\partial t} = \mathcal{L}_N^{\mathbf{m}} f_t^N$$

where $\mathcal{L}_N^{\mathbf{m}} = -\mathcal{A}_N^{\mathbf{m}} + \gamma \mathcal{S}_N$ and $\gamma > 0$ is the noise intensity.

- 1 $\left\{ r_x(t), p_x(t) ; x \in \mathbb{T}_N \right\}_{t \ge 0}$ is a Markov process on $(\mathbb{R} \times \mathbb{R})^N$. Denote by μ_t^N the law of that process.
- 2 The density f_t^N of the law μ_t^N satisfies the Fokker-Planck equation

$$\frac{\partial f_t^N}{\partial t} = \mathcal{L}_N^{\mathbf{m}} f_t^N$$

where $\mathcal{L}_{N}^{\mathbf{m}} = -\mathcal{A}_{N}^{\mathbf{m}} + \gamma \mathcal{S}_{N}$ and $\gamma > 0$ is the *noise intensity*.

3 The only "relevant" invariant measures are the Gibbs measures

$$\mu_T^N(\mathbf{dr}, \mathbf{dp}) := \frac{1}{Z(T)} \prod_{x=1}^N \exp\left(-\frac{e_x}{T}\right) \mathbf{d}r_x \mathbf{d}p_x.$$

Gibbs measures:

$$\mu_T^N(\mathrm{d}\mathbf{r},\mathrm{d}\mathbf{p}) := \frac{1}{Z(T)} \prod_{x=1}^N \exp\left(-\frac{e_x}{T}\right) \mathrm{d}r_x \mathrm{d}p_x$$

Gibbs measures:

$$\mu_T^N(\mathrm{d}\mathbf{r},\mathrm{d}\mathbf{p}) := \frac{1}{Z(T)} \prod_{x=1}^N \exp\left(-\frac{e_x}{T}\right) \,\mathrm{d}r_x \mathrm{d}p_x$$

Consequence of CLT

If $\{r_x, p_x\}$ are distributed according to μ_T^N then

$$\mathcal{Y}^{N}(\cdot) := \frac{1}{\sqrt{N}} \sum_{x=1}^{N} \delta_{x/N}(\cdot) \left\{ e_{x} - T \right\}$$

converges in law towards a Gaussian field.

Gibbs measures:

$$\mu_T^N(\mathrm{d}\mathbf{r},\mathrm{d}\mathbf{p}) := \frac{1}{Z(T)} \prod_{x=1}^N \exp\left(-\frac{e_x}{T}\right) \,\mathrm{d}r_x \mathrm{d}p_x$$

Consequence of CLT

If $\{r_x, p_x\}$ are distributed according to μ_T^N then

$$\mathcal{Y}^{N}(\cdot) := \frac{1}{\sqrt{N}} \sum_{x=1}^{N} \delta_{x/N}(\cdot) \left\{ e_{x} - T \right\}$$

converges in law towards a Gaussian field.

Precisely: If *F*, *G* are smooth functions,

$$\left\langle \mathcal{Y}^{N}(F) \mathcal{Y}^{N}(G) \right\rangle_{T} \xrightarrow[N \to \infty]{} 2T^{2} \int_{0}^{1} F(u)G(u) \mathrm{d}u$$

Energy fluctuation field

$$\mathcal{Y}_t^N(\cdot) := \frac{1}{\sqrt{N}} \sum_{x=1}^N \delta_{x/N}(\cdot) \left\{ e_x(tN^{\mathbf{a}}) - T \right\}$$

Energy fluctuation field

$$\mathcal{Y}_t^N(\cdot) := \frac{1}{\sqrt{N}} \sum_{x=1}^N \delta_{x/N}(\cdot) \left\{ e_x(tN^{\mathbf{a}}) - T \right\}$$

Diffusion?

Energy fluctuation field

$$\mathcal{Y}_t^N(\cdot) := \frac{1}{\sqrt{N}} \sum_{x=1}^N \delta_{x/N}(\cdot) \left\{ e_x(tN^{\mathbf{a}}) - T \right\}$$

Diffusion? $\mathbf{a} = \mathbf{2}$ and \mathcal{Y}_t^N converges in law towards an infinite dimensional Ornstein-Uhlenbeck process \mathcal{Y}_t solution to the SPDE

$$\partial_t \mathcal{Y} = \mathbf{D} \; \partial_x^2 \mathcal{Y} \; \mathrm{d}t + \left(4\mathbf{D}T^2\right)^{1/2} \; \partial_x \mathcal{B}(x,t)$$

where \mathcal{B} is a standard space-time white noise.

Energy fluctuation field

$$\mathcal{Y}_t^N(\cdot) := \frac{1}{\sqrt{N}} \sum_{x=1}^N \delta_{x/N}(\cdot) \left\{ e_x(tN^{\mathbf{a}}) - T \right\}$$

Diffusion? $\mathbf{a} = \mathbf{2}$ and \mathcal{Y}_t^N converges in law towards an infinite dimensional Ornstein-Uhlenbeck process \mathcal{Y}_t solution to the SPDE

$$\partial_t \mathcal{Y} = \mathbf{D} \ \partial_x^2 \mathcal{Y} \ \mathrm{d}t + \left(4\mathbf{D}T^2\right)^{1/2} \ \partial_x \mathcal{B}(x,t)$$

where \mathcal{B} is a standard space-time white noise.

 $\mathbf{D} = diffusion$ coefficient

Two results

Let *F* and *G* be smooth functions,

$$\left\langle \mathcal{Y}_t^N(F) \; \mathcal{Y}_0^N(G) \right\rangle_T \xrightarrow[N \to \infty]{} 2T^2 \iint_{\mathbb{R}^2} F(u) G(v) \mathbf{P}_t(u-v) \mathrm{d}u \mathrm{d}v$$

where \mathbf{P}_t is the semi-group associated to $\mathbf{D} \cdot \Delta$ where

Two results

Let *F* and *G* be smooth functions,

$$\left\langle \mathcal{Y}_{t}^{N}(F) \mathcal{Y}_{0}^{N}(G) \right\rangle_{T} \xrightarrow[N \to \infty]{} 2T^{2} \iint_{\mathbb{R}^{2}} F(u)G(v)\mathbf{P}_{t}(u-v) \mathrm{d}u \mathrm{d}v$$

where \mathbf{P}_t is the semi-group associated to $\mathbf{D} \cdot \Delta$ where

1. Constant masses + flip of intensity γ

$$\mathbf{D}(\gamma) = \frac{1}{2\gamma} \qquad [s. 2013]$$

Two results

Let *F* and *G* be smooth functions,

$$\left\langle \mathcal{Y}_{t}^{N}(F) \mathcal{Y}_{0}^{N}(G) \right\rangle_{T} \xrightarrow[N \to \infty]{} 2T^{2} \iint_{\mathbb{R}^{2}} F(u)G(v)\mathbf{P}_{t}(u-v) \mathrm{d}u \mathrm{d}v$$

where \mathbf{P}_t is the semi-group associated to $\mathbf{D} \cdot \Delta$ where

1. Constant masses + flip of intensity γ

$$\mathbf{D}(\gamma) = \frac{1}{2\gamma} \qquad [s.\ 2013]$$

2. Random masses + flip(γ) + strong exchange(λ)

$$0 < \mathbf{D}(\gamma, \lambda) < +\infty$$
 [S. 2014]

1 Does not depend on the realization of masses

... only on moments $\mathbb{E}[m_0], \mathbb{E}[m_0^2], ...$

1 Does not depend on the realization of masses

... only on moments $\mathbb{E}[m_0], \mathbb{E}[m_0^2], ...$

2 Defined through energy currents

 $e'_{x}(t) = j_{x-1,x} - j_{x,x+1}$ with $j_{x,x+1} := p_{x+1}r_x = current.$

Does not depend on the realization of masses

... only on moments $\mathbb{E}[m_0], \mathbb{E}[m_0^2], ...$

2 Defined through energy currents

 $e'_{x}(t) = j_{x-1,x} - j_{x,x+1}$ with $j_{x,x+1} := p_{x+1}r_x = current.$

3 Has to satisfy

$$\mathbb{E}^{\mathrm{m}}\left\langle \left(\int_{0}^{t}\sum_{x\in\mathbb{T}_{N}}\left[j_{x,x+1}-\left\{\underbrace{\mathbf{D}(\gamma,\lambda)(e_{x+1}-e_{x})+\mathcal{L}^{\mathrm{m}}(\tau_{x}f)}_{fluctuation-dissipation}\right\}\right]\mathrm{d}s\right)^{2}\right\rangle_{T}$$

 $\mathcal{L}^{\mathbf{m}} =$ generator of the dynamics

Does not depend on the realization of masses $\mathbb{P}[m^2] = \mathbb{P}[m^2]$

... only on moments $\mathbb{E}[m_0], \mathbb{E}[m_0^2], ...$

2 Defined through energy currents

 $e'_{x}(t) = j_{x-1,x} - j_{x,x+1}$ with $j_{x,x+1} := p_{x+1}r_x = current.$

$$\mathbb{E}^{\mathbf{m}}\left\langle \left(\int_{0}^{t}\sum_{x\in\mathbb{T}_{N}}\left[j_{x,x+1}-\left\{\mathbf{D}(\gamma,\lambda)(e_{x+1}-e_{x})+\mathcal{L}^{\mathbf{m}}(\tau_{x}f)\right\}\right]\mathrm{d}s\right)^{2}\right\rangle_{T}$$

Does not depend on the realization of masses

... only on moments $\mathbb{E}[m_0], \mathbb{E}[m_0^2], ...$

2 Defined through energy currents

 $e'_{x}(t) = j_{x-1,x} - j_{x,x+1}$ with $j_{x,x+1} := p_{x+1}r_x = current.$

$$\mathbb{E}^{\mathbf{m}}\left\langle \left(\int_{0}^{t}\sum_{x\in\mathbb{T}_{N}}\left[j_{x,x+1}-\left\{\mathbf{D}(\gamma,\lambda)(e_{x+1}-e_{x})+\mathcal{L}^{\mathbf{m}}(\tau_{x}f)\right\}\right]\mathrm{d}s\right)^{2}\right\rangle_{T}$$

1 Does not depend on the realization of masses ... only on moments $\mathbb{E}[m_0], \mathbb{E}[m_0^2], ...$

... only on moments $\mathbb{E}[m_0], \mathbb{E}[m_0], ...$

2 Defined through energy currents

 $e'_{x}(t) = j_{x-1,x} - j_{x,x+1}$ with $j_{x,x+1} := p_{x+1}r_x = current.$

$$\mathbb{E}^{\mathbf{m}} \left\langle \left(\int_{0}^{t} \sum_{x \in \mathbb{T}_{N}} \left[j_{x,x+1} - \left\{ \mathbf{D}(\gamma,\lambda)(e_{x+1} - e_{x}) + \mathcal{L}^{\mathbf{m}}(\tau_{x}f) \right\} \right] \mathrm{d}s \right)^{2} \right\rangle_{T}$$

1 Does not depend on the realization of masses

... only on moments $\mathbb{E}[m_0], \mathbb{E}[m_0^2], ...$

2 Defined through energy currents

 $e'_{x}(t) = j_{x-1,x} - j_{x,x+1}$ with $j_{x,x+1} := p_{x+1}r_x = current.$

$$\underbrace{\mathbb{E}^{\mathbf{m}} \left\langle \left(\int_{0}^{t} \sum_{x \in \mathbb{T}_{N}} \left[j_{x,x+1} - \left\{ \mathbf{D}(\gamma,\lambda)(e_{x+1} - e_{x}) + \mathcal{L}^{\mathbf{m}}(\tau_{x}f) \right\} \right] ds \right)^{2} \right\rangle_{T}}_{inf} \underset{f \in \mathcal{Q}}{\text{lim sup }} \underset{t \to \infty}{\text{lim sup }} \frac{1}{tN} \times (\bigstar) = 0 ??$$

Does not depend on the realization of masses

... only on moments $\mathbb{E}[m_0], \mathbb{E}[m_0^2], ...$

2 Defined through energy currents

 $e'_{x}(t) = j_{x-1,x} - j_{x,x+1}$ with $j_{x,x+1} := p_{x+1}r_x = current.$

$$\underbrace{\mathbb{E}^{\mathbf{m}} \left\langle \left(\int_{0}^{t} \sum_{x \in \mathbb{T}_{N}} \left[j_{x,x+1} - \left\{ \mathbf{D}(\gamma,\lambda)(e_{x+1} - e_{x}) + \mathcal{L}^{\mathbf{m}}(\tau_{x}f) \right\} \right] ds \right)^{2} \right\rangle_{T}}_{\mathbf{f} \in \mathcal{Q}} \underset{N \to \infty}{\text{linsup linsup}} \quad \frac{1}{tN} \times (\bigstar) = 0 ??$$

In other words:

We construct a norm $\|\cdot\|_T$ and a Hilbert space \mathcal{H} which contains $j_{0,1}$ such that

$$\mathcal{H} = \left\{ e_1 - e_0 \right\} \oplus \overline{\left\{ \mathcal{L}^{\mathbf{m}} f \right\}}$$

In other words:

We construct a norm $\|\cdot\|_T$ and a Hilbert space \mathcal{H} which contains $j_{0,1}$ such that

$$\mathcal{H} = \left\{ e_1 - e_0 \right\} \oplus \overline{\left\{ \mathcal{L}^{\mathbf{m}} f \right\}}$$

Needed tools:

(i) Norm related to $(-S)^{-1} \triangleright$ Spectral gap!

In other words:

We construct a norm $\|\cdot\|_T$ and a Hilbert space \mathcal{H} which contains $j_{0,1}$ such that

$$\mathcal{H} = \left\{ e_1 - e_0 \right\} \oplus \overline{\left\{ \mathcal{L}^{\mathbf{m}} f \right\}}$$

Needed tools:

(i) Norm related to $(-S)^{-1} \triangleright \frac{\text{Spectral gap}}{\text{Spectral gap}}$

In other words:

We construct a norm $\|\cdot\|_T$ and a Hilbert space \mathcal{H} which contains $j_{0,1}$ such that

$$\mathcal{H} = \left\{ e_1 - e_0 \right\} \oplus \overline{\left\{ \mathcal{L}^{\mathbf{m}} f \right\}}$$

Needed tools:

- (i) Norm related to $(-S)^{-1} \triangleright \frac{\text{Spectral gap}}{\text{Spectral gap}}$
- (ii) Replacing \mathcal{L} with $\mathcal{S} \triangleright$ Sector condition

In other words:

We construct a norm $\|\cdot\|_T$ and a Hilbert space \mathcal{H} which contains $j_{0,1}$ such that

$$\mathcal{H} = \left\{ e_1 - e_0 \right\} \oplus \overline{\left\{ \mathcal{L}^{\mathbf{m}} f \right\}}$$

Needed tools:

- (i) Norm related to $(-S)^{-1} \triangleright \frac{\text{Spectral gap}}{\text{Spectral gap}}$
- (ii) Replacing \mathcal{L} with \mathcal{S}
- ▷ Sector condition weakened

In other words:

We construct a norm $\|\cdot\|_T$ and a Hilbert space \mathcal{H} which contains $j_{0,1}$ such that

$$\mathcal{H} = \left\{ e_1 - e_0 \right\} \oplus \overline{\left\{ \mathcal{L}^{\mathbf{m}} f \right\}}$$

Needed tools:

- (i) Norm related to $(-S)^{-1}$
- (ii) Replacing \mathcal{L} with \mathcal{S}

- ▷ Spectral gap
- ▷ Sector condition **weakened**
- ▷ only with the strong exchange

1 Green-Kubo formula for $D(\gamma, \lambda)$ [S. 2013]

1 Green-Kubo formula for $D(\gamma, \lambda)$ [S. 2013]

 \triangleright the two definitions are equivalent \checkmark

1 Green-Kubo formula for $D(\gamma, \lambda)$ [S. 2013]

 \triangleright the two definitions are equivalent \checkmark

$$\triangleright \mathbf{D}(\gamma,\lambda) \xrightarrow[\lambda \to 0]{} \mathbf{D}(\gamma,0) \quad \checkmark$$

1 Green-Kubo formula for $D(\gamma, \lambda)$ [S. 2013]

 \triangleright the two definitions are equivalent \checkmark

$$\triangleright \mathbf{D}(\gamma,\lambda) \xrightarrow[\lambda \to 0]{} \mathbf{D}(\gamma,0) \quad \checkmark \qquad \mathbf{D}(\gamma,\lambda) \xrightarrow[\gamma \to 0]{} ?? \quad \mathbf{Open!}$$

1 Green-Kubo formula for $D(\gamma, \lambda)$ [S. 2013]

 \triangleright the two definitions are equivalent \checkmark

$$\triangleright \mathbf{D}(\gamma,\lambda) \xrightarrow[\lambda \to 0]{} \mathbf{D}(\gamma,0) \quad \checkmark \qquad \mathbf{D}(\gamma,\lambda) \xrightarrow[\gamma \to 0]{} ?? \quad \mathbf{Open!}$$

2 Next step = Hydrodynamic limits

▷ Starting with a *local equilibrium* measure

1 Green-Kubo formula for $D(\gamma, \lambda)$ [S. 2013]

 \triangleright the two definitions are equivalent \checkmark

$$\triangleright \mathbf{D}(\gamma,\lambda) \xrightarrow[\lambda \to 0]{} \mathbf{D}(\gamma,0) \quad \checkmark \qquad \mathbf{D}(\gamma,\lambda) \xrightarrow[\gamma \to 0]{} ?? \quad \mathbf{Open!}$$

2 Next step = Hydrodynamic limits

▷ Starting with a *local equilibrium* measure

▷ Proving the *Fourier law*

$$\frac{\partial e(x,t)}{\partial t} = \frac{\partial}{\partial x} \left[\mathbf{D}(e) \frac{\partial e}{\partial x} \right]$$

1 Green-Kubo formula for $D(\gamma, \lambda)$ [S. 2013]

 \triangleright the two definitions are equivalent \checkmark

$$\triangleright \mathbf{D}(\gamma,\lambda) \xrightarrow[\lambda \to 0]{} \mathbf{D}(\gamma,0) \quad \checkmark \qquad \mathbf{D}(\gamma,\lambda) \xrightarrow[\gamma \to 0]{} ?? \quad \mathbf{Open!}$$

2 Next step = Hydrodynamic limits

▷ Starting with a *local equilibrium* measure

▷ Proving the *Fourier law*

$$\frac{\partial e(x,t)}{\partial t} = \frac{\partial}{\partial x} \left[\mathbf{D}(e) \frac{\partial e}{\partial x} \right]$$

 ▷ Harmonic chain with constant masses + flip Harmonic chain with random masses
 ○ [S. 2013]
 ○ Open!

1 Green-Kubo formula for $D(\gamma, \lambda)$ [S. 2013]

 \triangleright the two definitions are equivalent \checkmark

$$\triangleright \mathbf{D}(\gamma,\lambda) \xrightarrow[\lambda \to 0]{} \mathbf{D}(\gamma,0) \quad \checkmark \qquad \mathbf{D}(\gamma,\lambda) \xrightarrow[\gamma \to 0]{} ?? \quad \mathbf{Open!}$$

2 Next step = Hydrodynamic limits

▷ Starting with a *local equilibrium* measure

▷ Proving the *Fourier law*

$$\frac{\partial e(x,t)}{\partial t} = \frac{\partial}{\partial x} \left[\mathbf{D}(e) \frac{\partial e}{\partial x} \right]$$

 ▷ Harmonic chain with constant masses + flip Harmonic chain with random masses
 ○ Open!

3 Cases of **anomalous diffusion** [S. Bernardin Gonçalves Jara '14]

Thank you for your attention!

