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A FEW MINUTES FOR PHYSICS

What is heat equation?

FOURIER LAW (1822):

J (x, t) =−D(T)
∂ T

∂ x
(x, t)

D= diffusion coefficient
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I. MICROSCOPIC MODEL

Chain of N harmonic coupled oscillators on the torus

TN = {1, ..., N} 0≡ N

px : momentum of atom x,
rx : distance between x et x+ 1,
mx : mass of atom x.

Total energy = “temperature”

H :=
∑

x

¨

p2
x

2mx
+

r2
x

2

«

=
∑

x
ex.
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Hamiltonian dynamics

Â Question: Evolution in time of the configurations
�

rx, px
	 ?

Â Newton equations







drx

dt
=

px+1

mx+1
−

px

mx

dpx

dt
= rx − rx−1

⇒ Random environment {mx}

Â Conserved quantities

∑

px

∑

rx H :=
∑

¨

p2
x

2mx
+

r2
x

2

«

...

Â Number of particules? ... N ∝ 1023 (Avogadro) !!
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Boltzmann idea!

Atomic description⇒ Macroscopic description

We define µN
t (dr, dp) as the probability law at time t on the space

ΩN := RN ×RN = positions × momenta

Equilibrium states? Invariant measures:

Â If there is only one conserved quantity (the energy) the invariant
measures are the Gibbs measures defined as

µN
T (dr, dp) :=

1

Z(T)

N
∏

x=1

exp
�

−
ex

T

�

drxdpx.

Â One parameter T > 0, called temperature, and ex :=
p2

x

2mx
+

r2
x

2
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Stochastic perturbation
of the dynamics

Stefano Olla S.R.S Varadhan H.T. Yau
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II. LET’S MAKE NOISE!

We add a stochastic noise⇒ provides ergodicity

Each atom x waits independently a random Poissonian time
and then flips px into −px.
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Another stochastic perturbation...

1 which conserves the total momentum
∑

px

Â Momentum exchange with constant masses:
after random Poissonian times,

px↔ px+1

2 which is “less degenerate”

Â Strong exchange: after random Poissonian times,

px
p

mx
↔ rx

Both still conserve
∑

¨

p2
x

2mx
+

r2
x

2

«
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Final dynamics
Â Deterministic part

• Two many conserved quantities

• Re-written in terms of a generator of a semi-group Am
N

• m = random environment (masses)

Â Stochastic part

• Given by a generator of a Markov process SN

• Destroy the conservation of
∑

px

⇒NORMAL DIFFUSION

• Sufficient to know “all” the invariant measures

⇒ ERGODICITY

• Still degenerate... No spectral gap!
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What’s important?

1

n

rx(t), px(t) ; x ∈ TN

o

t¾0
is a Markov process on (R×R)N.

Denote by µN
t the law of that process.

2 The density fN
t of the law µN

t satisfies the Fokker-Planck
equation

∂ fN
t

∂ t
= Lm

N fN
t

where Lm
N =−A

m
N + γSN and γ > 0 is the noise intensity.

3 The only “relevant” invariant measures are the Gibbs
measures

µN
T (dr, dp) :=

1

Z(T)

N
∏

x=1

exp
�

−
ex

T

�

drxdpx.
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III. ENERGY FLUCTUATIONS

Gibbs measures:

µN
T (dr, dp) :=

1

Z(T)

N
∏

x=1

exp
�

−
ex

T

�

drxdpx

Consequence of CLT

If {rx, px} are distributed according to µN
T then

YN(·) :=
1
p

N

N
∑

x=1

δx/N(·)
n

ex − T
o

converges in law towards a Gaussian field.

Precisely: If F, G are smooth functions,

D

YN(F) YN(G)
E

T
−−−→
N→∞

2T2

∫ 1

0

F(u)G(u)du
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And when time evolves?

Energy fluctuation field

YN
t (·) :=

1
p

N

N
∑

x=1

δx/N(·)
n

ex
�

tNa�− T
o

Diffusion? a= 2 and YN
t converges in law towards an infinite

dimensional Ornstein-Uhlenbeck process Yt solution to the SPDE

∂tY = D ∂ 2
x Y dt+

�

4DT2�1/2
∂xB(x, t)

where B is a standard space-time white noise.

D = diffusion coefficient
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Two results

Let F and G be smooth functions,

D

YN
t (F) Y

N
0 (G)

E

T
−−−→
N→∞

2T2

∫∫

R2

F(u)G(v)Pt(u− v)dudv

where Pt is the semi-group associated to D ·∆ where

1. Constant masses + flip of intensity γ

D(γ) =
1

2γ
[S. 2013]

2. Random masses + flip(γ) + strong exchange(λ)

0< D(γ,λ)<+∞ [S. 2014]
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What about D(γ,λ)?

1 Does not depend on the realization of masses

... only on moments E[m0], E[m2
0], ...

2 Defined through energy currents

e′x(t) = jx−1,x − jx,x+1 with jx,x+1 := px+1rx = current.

3 Has to satisfy
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Em

®�
∫ t

0

∑

x∈TN

h

jx,x+1−
n

D(γ,λ)(ex+1− ex) +Lm(τx f)
︸ ︷︷ ︸

fluctuation−dissipation

oi

ds

�2¸

T
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×
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2 Defined through energy currents

e′x(t) = jx−1,x − jx,x+1 with jx,x+1 := px+1rx = current.

3 Has to satisfy

Em

®�
∫ t

0

∑

x∈TN

h

jx,x+1−
n

D(γ,λ)(ex+1− ex) +Lm(τx f)
oi

ds

�2¸

T
︸ ︷︷ ︸

inf
f∈Q

limsup
N→∞

lim sup
t→∞

1

tN
×
�

Æ
�

= 0 ??
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Non-gradient method... revisited

In other words:

We construct a norm ‖ · ‖T and a Hilbert space H which contains
j0,1 such that

H =
�

e1− e0
	

⊕
�

Lmf
	

Needed tools:
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We construct a norm ‖ · ‖T and a Hilbert space H which contains
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H =
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e1− e0
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Lmf
	

Needed tools:

(i) Norm related to (−S)−1 Â Spectral gap

(ii) Replacing L with S Â Sector condition weakened

Â only with the strong exchange
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Going further!
1 Green-Kubo formula for D(γ,λ) [S. 2013]

Â the two definitions are equivalent Ø
Â D(γ,λ)−−→

λ→0
D(γ, 0) Ø D(γ,λ)−−→

γ→0
?? Open!

2 Next step = Hydrodynamic limits

Â Starting with a local equilibrium measure

Â Proving the Fourier law

∂ e(x, t)
∂ t

=
∂

∂ x

�

D(e)
∂ e

∂ x

�

Â Harmonic chain with constant masses + flip Ø [S. 2013]
Harmonic chain with random masses Open!

3 Cases of anomalous diffusion [S. Bernardin Gonçalves Jara ’14]



17/ 18

Going further!
1 Green-Kubo formula for D(γ,λ) [S. 2013]

Â the two definitions are equivalent Ø

Â D(γ,λ)−−→
λ→0

D(γ, 0) Ø D(γ,λ)−−→
γ→0

?? Open!

2 Next step = Hydrodynamic limits

Â Starting with a local equilibrium measure

Â Proving the Fourier law

∂ e(x, t)
∂ t

=
∂

∂ x

�

D(e)
∂ e

∂ x

�

Â Harmonic chain with constant masses + flip Ø [S. 2013]
Harmonic chain with random masses Open!

3 Cases of anomalous diffusion [S. Bernardin Gonçalves Jara ’14]



17/ 18

Going further!
1 Green-Kubo formula for D(γ,λ) [S. 2013]

Â the two definitions are equivalent Ø
Â D(γ,λ)−−→

λ→0
D(γ, 0) Ø

D(γ,λ)−−→
γ→0

?? Open!

2 Next step = Hydrodynamic limits

Â Starting with a local equilibrium measure

Â Proving the Fourier law

∂ e(x, t)
∂ t

=
∂

∂ x

�

D(e)
∂ e

∂ x

�

Â Harmonic chain with constant masses + flip Ø [S. 2013]
Harmonic chain with random masses Open!

3 Cases of anomalous diffusion [S. Bernardin Gonçalves Jara ’14]



17/ 18

Going further!
1 Green-Kubo formula for D(γ,λ) [S. 2013]

Â the two definitions are equivalent Ø
Â D(γ,λ)−−→

λ→0
D(γ, 0) Ø D(γ,λ)−−→

γ→0
?? Open!

2 Next step = Hydrodynamic limits

Â Starting with a local equilibrium measure

Â Proving the Fourier law

∂ e(x, t)
∂ t

=
∂

∂ x

�

D(e)
∂ e

∂ x

�

Â Harmonic chain with constant masses + flip Ø [S. 2013]
Harmonic chain with random masses Open!

3 Cases of anomalous diffusion [S. Bernardin Gonçalves Jara ’14]



17/ 18

Going further!
1 Green-Kubo formula for D(γ,λ) [S. 2013]

Â the two definitions are equivalent Ø
Â D(γ,λ)−−→

λ→0
D(γ, 0) Ø D(γ,λ)−−→

γ→0
?? Open!

2 Next step = Hydrodynamic limits

Â Starting with a local equilibrium measure

Â Proving the Fourier law

∂ e(x, t)
∂ t

=
∂

∂ x

�

D(e)
∂ e

∂ x

�

Â Harmonic chain with constant masses + flip Ø [S. 2013]
Harmonic chain with random masses Open!

3 Cases of anomalous diffusion [S. Bernardin Gonçalves Jara ’14]



17/ 18

Going further!
1 Green-Kubo formula for D(γ,λ) [S. 2013]

Â the two definitions are equivalent Ø
Â D(γ,λ)−−→

λ→0
D(γ, 0) Ø D(γ,λ)−−→

γ→0
?? Open!

2 Next step = Hydrodynamic limits

Â Starting with a local equilibrium measure

Â Proving the Fourier law

∂ e(x, t)
∂ t

=
∂

∂ x

�

D(e)
∂ e

∂ x

�

Â Harmonic chain with constant masses + flip Ø [S. 2013]
Harmonic chain with random masses Open!

3 Cases of anomalous diffusion [S. Bernardin Gonçalves Jara ’14]



17/ 18

Going further!
1 Green-Kubo formula for D(γ,λ) [S. 2013]

Â the two definitions are equivalent Ø
Â D(γ,λ)−−→

λ→0
D(γ, 0) Ø D(γ,λ)−−→

γ→0
?? Open!

2 Next step = Hydrodynamic limits

Â Starting with a local equilibrium measure

Â Proving the Fourier law

∂ e(x, t)
∂ t

=
∂

∂ x

�

D(e)
∂ e

∂ x

�

Â Harmonic chain with constant masses + flip Ø [S. 2013]
Harmonic chain with random masses Open!

3 Cases of anomalous diffusion [S. Bernardin Gonçalves Jara ’14]



17/ 18

Going further!
1 Green-Kubo formula for D(γ,λ) [S. 2013]

Â the two definitions are equivalent Ø
Â D(γ,λ)−−→

λ→0
D(γ, 0) Ø D(γ,λ)−−→

γ→0
?? Open!

2 Next step = Hydrodynamic limits

Â Starting with a local equilibrium measure

Â Proving the Fourier law

∂ e(x, t)
∂ t

=
∂

∂ x

�

D(e)
∂ e

∂ x

�

Â Harmonic chain with constant masses + flip Ø [S. 2013]
Harmonic chain with random masses Open!

3 Cases of anomalous diffusion [S. Bernardin Gonçalves Jara ’14]



18/ 18

Thank you for your attention!


