A Brief Introduction to McKean-Vlasov Processes and non-linear diffusions in general

Dialid Santiago Prof. Sigurd Assing and Prof. Vassili Kolokoltsov

Department of Statistics University of Warwick, UK

Young Women in Probability Bonn, May 2014 Roughly speaking, McKean-Vlasov processes or McKean-Vlasov diffusions are stochastic process which can be described by SDEs of the form

$$\begin{cases} dX_t = \int \alpha(X_t, u) \mu_t(du) dB_t + \int \beta(X_t, u) \mu_t(du) dt, & X_0 \text{ given} \\ \mu_t = \mathcal{L}(X_t), \end{cases}$$
(1)

where *B* is a standard *d*-dimensional Brownian motion and $\mathcal{L}(X_t)$ denotes the marginal distribution of the process *X* at the time *t*.

In general one can think of processes which satisfy SDEs of the following form

$$\begin{cases} dX_t = a(X_t, \mu_t) dB_t + b(X_t, \mu_t) dt, & X_0 \text{ given} \\ \mu_t = \mathcal{L}(X_t). \end{cases}$$

These processes are called non-linear diffusions.

Roughly speaking, McKean-Vlasov processes or McKean-Vlasov diffusions are stochastic process which can be described by SDEs of the form

$$\begin{cases} dX_t = \int \alpha(X_t, u) \mu_t(du) dB_t + \int \beta(X_t, u) \mu_t(du) dt, & X_0 \text{ given} \\ \mu_t = \mathcal{L}(X_t), \end{cases}$$
(1)

where *B* is a standard *d*-dimensional Brownian motion and $\mathcal{L}(X_t)$ denotes the marginal distribution of the process *X* at the time *t*.

In general one can think of processes which satisfy SDEs of the following form

$$\begin{cases} dX_t = a(X_t, \mu_t) dB_t + b(X_t, \mu_t) dt, & X_0 \text{ given} \\ \mu_t = \mathcal{L}(X_t). \end{cases}$$

These processes are called non-linear diffusions.

(2)

A little bit of history

(a) Mark Kac

(b) Anatoly Vlasov

The story of these processes started with a stochastic toy model for the Vlasov equation of plasma proposed by Mark Kac in his paper "Foundations of kinetic theory (1956)".

A little bit of history

In 1966 Henry P. McKean published his seminal paper "A class of Markov processes associated with non-linear parabolic equations".

- Existence, Uniqueness and Properties
- Mean Fields
- Stochastic Control

Connection with non-linear parabolic PDEs

- Vlasov equation of plasma
- Granular media equation

Applications in several areas

- Physics
- Finance
- Social Interactions

イロト イ団ト イヨト イヨト

- Existence, Uniqueness and Properties
- Mean Fields
- Stochastic Control

Connection with non-linear parabolic PDEs

- Vlasov equation of plasma
- Granular media equation
- Applications in several areas
 - Physics
 - Finance
 - Social Interactions

イロト イ団ト イヨト イヨト

- Existence, Uniqueness and Properties
- Mean Fields
- Stochastic Control
- Connection with non-linear parabolic PDEs
 - Vlasov equation of plasma
 - Granular media equation
- Applications in several areas
 - Physics
 - Finance
 - Social Interactions

イロト イ団ト イヨト イヨト

- Existence, Uniqueness and Properties
- Mean Fields
- Stochastic Control
- Connection with non-linear parabolic PDEs
 - Vlasov equation of plasma
 - Granular media equation
- Applications in several areas
 - Physics
 - Finance
 - Social Interactions

イロト イヨト イヨト

- Existence, Uniqueness and Properties
- Mean Fields
- Stochastic Control

Connection with non-linear parabolic PDEs

- Vlasov equation of plasma
- Granular media equation
- Applications in several areas
 - Physics
 - Finance
 - Social Interactions

(4) (2) (4) (2) (4)

- Existence, Uniqueness and Properties
- Mean Fields
- Stochastic Control

Connection with non-linear parabolic PDEs

- Vlasov equation of plasma
- Granular media equation
- Applications in several areas
 - Physics
 - Finance
 - Social Interactions

- E - - E -

- Existence, Uniqueness and Properties
- Mean Fields
- Stochastic Control
- Connection with non-linear parabolic PDEs
 - Vlasov equation of plasma
 - Granular media equation
- Applications in several areas
 - Physics
 - Finance
 - Social Interactions

- B - - B

- Existence, Uniqueness and Properties
- Mean Fields
- Stochastic Control

Connection with non-linear parabolic PDEs

- Vlasov equation of plasma
- Granular media equation

Applications in several areas

- Physics
- Finance
- Social Interactions

- Existence, Uniqueness and Properties
- Mean Fields
- Stochastic Control
- Connection with non-linear parabolic PDEs
 - Vlasov equation of plasma
 - Granular media equation
- Applications in several areas
 - Physics
 - Finance
 - Social Interactions

- Existence, Uniqueness and Properties
- Mean Fields
- Stochastic Control
- Connection with non-linear parabolic PDEs
 - Vlasov equation of plasma
 - Granular media equation
- Applications in several areas
 - Physics
 - Finance
 - Social Interactions

- Theoretical interest
 - Existence, Uniqueness and Properties
 - Mean Fields
 - Stochastic Control
- Connection with non-linear parabolic PDEs
 - Vlasov equation of plasma
 - Granular media equation
- Applications in several areas
 - Physics
 - Finance
 - Social Interactions

• For the rest of this talk we are going to assume that the diffusion coefficient is constant.

Consider non-linear SDE

$$\begin{cases} dX_t = \sqrt{2}dB_t + \int \beta(X_t, u)\mu_t(du)dt, & X_0 \text{ given} \\ \mu_t = \mathcal{L}(X_t), \end{cases}$$

where $\beta : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ is bounded and Lipschitz continuous.

- For the rest of this talk we are going to assume that the diffusion coefficient is constant.
- Consider non-linear SDE

$$\begin{cases} dX_t = \sqrt{2}dB_t + \int \beta(X_t, u)\mu_t(du)dt, & X_0 \text{ given} \\ \mu_t = \mathcal{L}(X_t), \end{cases}$$

where $\beta : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ is bounded and Lipschitz continuous.

(3)

• Family of generators of the form

$$L_t = \frac{1}{2} \sum_{i,j=1}^d \frac{\partial^2}{\partial x_j \partial x_i} + \sum_{i=1}^d \int \beta_i(x,y) \mu_t(dy) \frac{\partial}{\partial x_i},$$

for all $t \ge 0$.

- Martingale Formulation
- PDE of the form

$$\frac{\partial u}{\partial t}(t,x) = L_t u(t,x), \quad t > 0,$$

$$u(0,x) = u_0.$$

▶ 4 Ξ

• Family of generators of the form

$$L_t = \frac{1}{2} \sum_{i,j=1}^d \frac{\partial^2}{\partial x_j \partial x_i} + \sum_{i=1}^d \int \beta_i(x, y) \mu_t(dy) \frac{\partial}{\partial x_i},$$

for all $t \ge 0$.

- Martingale Formulation
- PDE of the form

$$\frac{\partial u}{\partial t}(t,x) = L_t u(t,x), \quad t > 0, u(0,x) = u_0.$$

- E

• Family of generators of the form

$$L_t = \frac{1}{2} \sum_{i,j=1}^d \frac{\partial^2}{\partial x_j \partial x_i} + \sum_{i=1}^d \int \beta_i(x, y) \mu_t(dy) \frac{\partial}{\partial x_i},$$

for all $t \ge 0$.

- Martingale Formulation
- PDE of the form

$$\begin{array}{lll} \frac{\partial u}{\partial t}(t,x) &=& L_t u(t,x), \qquad t>0, \\ u(0,x) &=& u_0. \end{array}$$

- A natural way of associating a particle system is to consider one with mean field interaction.
- For each $N \in \mathbb{N}$ consider the particle system

$$\begin{cases} dX_t^{i,N} = \sqrt{2}dB_t^i + \int \beta(X_t^{i,N}, y)\Pi_t^N(dy)dt & i = 1, \dots, N \\ X_0^{i,N} = X_0, & i = 1, \dots, N \end{cases}$$

where

$$\exists_t^N = \frac{1}{N} \sum_{j=1}^N \delta_{X_t^{j,N}}(dx)$$

Clearly this can be written as follows

$$\begin{cases} dX_t^{i,N} = \sqrt{2}dB_t^i + \sum_{j=1}^N \beta(X_t^{i,N}, X_t^{j,N})dt & i = 1, \dots, N\\ X_0^{i,N} = X_0, & i = 1, \dots, N \end{cases}$$
(2)

- A natural way of associating a particle system is to consider one with mean field interaction.
- For each $N \in \mathbb{N}$ consider the particle system

$$\begin{cases} dX_t^{i,N} = \sqrt{2}dB_t^i + \int \beta(X_t^{i,N}, y)\Pi_t^N(dy)dt & i = 1, \dots, N\\ X_0^{i,N} = X_0, & i = 1, \dots, N \end{cases}$$

where

$$\Pi_t^N = \frac{1}{N} \sum_{j=1}^N \delta_{X_t^{j.N}}(dx)$$

Clearly this can be written as follows

$$\begin{cases} dX_t^{i,N} = \sqrt{2} dB_t^i + \sum_{j=1}^N \beta(X_t^{i,N}, X_t^{j,N}) dt & i = 1, \dots, N \\ X_0^{i,N} = X_0, & i = 1, \dots, N \end{cases}$$
(2)

- A natural way of associating a particle system is to consider one with mean field interaction.
- For each $N \in \mathbb{N}$ consider the particle system

$$\begin{cases} dX_t^{i,N} = \sqrt{2}dB_t^i + \int \beta(X_t^{i,N}, y)\Pi_t^N(dy)dt & i = 1, \dots, N\\ X_0^{i,N} = X_0, & i = 1, \dots, N \end{cases}$$

where

$$\exists_t^N = \frac{1}{N} \sum_{j=1}^N \delta_{X_t^{j.N}}(dx)$$

Clearly this can be written as follows

$$\begin{cases} dX_t^{i,N} = \sqrt{2} dB_t^i + \sum_{j=1}^N \beta(X_t^{i,N}, X_t^{j,N}) dt & i = 1, \dots, N \\ X_0^{i,N} = X_0, & i = 1, \dots, N \end{cases}$$
(4)

- A natural way of associating a particle system is to consider one with mean field interaction.
- For each $N \in \mathbb{N}$ consider the particle system

$$\begin{cases} dX_t^{i,N} = \sqrt{2}dB_t^i + \int \beta(X_t^{i,N}, y)\Pi_t^N(dy)dt & i = 1, \dots, N\\ X_0^{i,N} = X_0, & i = 1, \dots, N \end{cases}$$

where

$$\exists_t^N = \frac{1}{N} \sum_{j=1}^N \delta_{X_t^{j.N}}(dx)$$

Clearly this can be written as follows

$$\begin{cases} dX_t^{i,N} = \sqrt{2} dB_t^i + \sum_{j=1}^N \beta(X_t^{i,N}, X_t^{j,N}) dt & i = 1, \dots, N \\ X_0^{i,N} = X_0, & i = 1, \dots, N \end{cases}$$
(4)

Properties

• Existence and Uniqueness

- Moment Control
- Behaviour at Infinity
 - Existence of a stationary distribution
 - Uniqueness of the stationary distribution
 - Speed of convergence towards the invariant distribution

All these properties depend on the assumptions on the coefficient β!

- Bounded and Lipschitz continuous
- Bounded and Locally Lipschitz
- What about unbounded coefficients?
- Linear growth, Polynomial growth?
- We require additional assumptions!

<ロ> <同> <同> < 同> < 同> < 同

Properties

• Existence and Uniqueness

Moment Control

Behaviour at Infinity

- Existence of a stationary distribution
- Uniqueness of the stationary distribution
- Speed of convergence towards the invariant distribution

• All these properties depend on the assumptions on the coefficient β!

- Bounded and Lipschitz continuous
- Bounded and Locally Lipschitz
- What about unbounded coefficients?
- Linear growth, Polynomial growth?
- We require additional assumptions!

<ロ> <同> <同> < 同> < 同> < 同

• Existence and Uniqueness

Moment Control

Behaviour at Infinity

- Existence of a stationary distribution
- Uniqueness of the stationary distribution
- Speed of convergence towards the invariant distribution

All these properties depend on the assumptions on the coefficient β!

- Bounded and Lipschitz continuous
- Bounded and Locally Lipschitz
- What about unbounded coefficients?
- Linear growth, Polynomial growth?
- We require additional assumptions!

・ロト ・同ト ・ヨト ・ヨ

- Existence and Uniqueness
- Moment Control
- Behaviour at Infinity
 - Existence of a stationary distribution
 - Uniqueness of the stationary distribution
 - Speed of convergence towards the invariant distribution
- All these properties depend on the assumptions on the coefficient β!
 - Bounded and Lipschitz continuous
 - Bounded and Locally Lipschitz
 - What about unbounded coefficients?
 - Linear growth, Polynomial growth?
 - We require additional assumptions!

・ロト ・同ト ・ヨト ・ヨ

- Existence and Uniqueness
- Moment Control
- Behaviour at Infinity
 - Existence of a stationary distribution
 - Uniqueness of the stationary distribution
 - Speed of convergence towards the invariant distribution
- All these properties depend on the assumptions on the coefficient β!
 - Bounded and Lipschitz continuous
 - Bounded and Locally Lipschitz
 - What about unbounded coefficients?
 - Linear growth, Polynomial growth?
 - We require additional assumptions!

イロト イヨト イヨト イヨ

- Existence and Uniqueness
- Moment Control
- Behaviour at Infinity
 - Existence of a stationary distribution
 - Uniqueness of the stationary distribution
 - Speed of convergence towards the invariant distribution
- All these properties depend on the assumptions on the coefficient β!
 - Bounded and Lipschitz continuous
 - Bounded and Locally Lipschitz
 - What about unbounded coefficients?
 - Linear growth, Polynomial growth?
 - We require additional assumptions!

イロト イヨト イヨト イヨ

- Existence and Uniqueness
- Moment Control
- Behaviour at Infinity
 - Existence of a stationary distribution
 - Uniqueness of the stationary distribution
 - Speed of convergence towards the invariant distribution

All these properties depend on the assumptions on the coefficient β!

- Bounded and Lipschitz continuous
- Bounded and Locally Lipschitz
- What about unbounded coefficients?
- Linear growth, Polynomial growth?
- We require additional assumptions!

- Existence and Uniqueness
- Moment Control
- Behaviour at Infinity
 - Existence of a stationary distribution
 - Uniqueness of the stationary distribution
 - Speed of convergence towards the invariant distribution

All these properties depend on the assumptions on the coefficient β!

- Bounded and Lipschitz continuous
- Bounded and Locally Lipschitz
- What about unbounded coefficients?
- Linear growth, Polynomial growth?
- We require additional assumptions!

- Existence and Uniqueness
- Moment Control
- Behaviour at Infinity
 - Existence of a stationary distribution
 - Uniqueness of the stationary distribution
 - Speed of convergence towards the invariant distribution
- All these properties depend on the assumptions on the coefficient β!
 - Bounded and Lipschitz continuous
 - Bounded and Locally Lipschitz
 - What about unbounded coefficients?
 - Linear growth, Polynomial growth?
 - We require additional assumptions!

- Existence and Uniqueness
- Moment Control
- Behaviour at Infinity
 - Existence of a stationary distribution
 - Uniqueness of the stationary distribution
 - Speed of convergence towards the invariant distribution
- All these properties depend on the assumptions on the coefficient β!
 - Bounded and Lipschitz continuous
 - Bounded and Locally Lipschitz
 - What about unbounded coefficients?
 - Linear growth, Polynomial growth?
 - We require additional assumptions!

- Existence and Uniqueness
- Moment Control
- Behaviour at Infinity
 - Existence of a stationary distribution
 - Uniqueness of the stationary distribution
 - Speed of convergence towards the invariant distribution
- All these properties depend on the assumptions on the coefficient β!
 - Bounded and Lipschitz continuous
 - Bounded and Locally Lipschitz
 - What about unbounded coefficients?
 - Linear growth, Polynomial growth?
 - We require additional assumptions!

- Existence and Uniqueness
- Moment Control
- Behaviour at Infinity
 - Existence of a stationary distribution
 - Uniqueness of the stationary distribution
 - Speed of convergence towards the invariant distribution
- All these properties depend on the assumptions on the coefficient β!
 - Bounded and Lipschitz continuous
 - Bounded and Locally Lipschitz
 - What about unbounded coefficients?
 - Linear growth, Polynomial growth?
 - We require additional assumptions!

Consider equations of the form

$$\begin{cases} dX_t = \sqrt{2}dB_t - [\nabla V(X_t) + \nabla W * \mu_t(X_t)]dt, & X_0 \text{ given} \\ \mu_t = \mathcal{L}(X_t), \end{cases}$$
(5)

where * denotes the convolution operator.

- Provided some regularities on *V* and *W* the existence of theses processes can be proved.
- Moreover, it is not difficult to prove that the laws μ_t , $t \ge 0$ are absolutely continuous and their densities $u_t \ge 0$ satisfy the so-called granular media equation

$$\frac{\partial u}{\partial t} = \nabla \cdot [\nabla u + u \nabla V + u (\nabla W * u)].$$

- 1998 Benachour et al. studied equation (5) with V = 0 in the one-dimensional case.
- 2001 Malrieu studied equation (5) by using a particle system and propagation of chaos approach.
- 2008 Herrmann et al. generalised Benachour et al. results to the multidimensional case.
- 2008 Cattiaux et al. generalised Malrieu's work.
- 2014 Pierre del Moral and Tugaut proved uniform propagation of chaos for processes of the form (5) with V = 0.

Theorem

Let $\beta : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ be a function satisfying assumptions (I)- (III) and ξ a probability measure which belongs to \mathcal{P}_q with $q = \max\{m + m_1 + 1, m_2 + 1\}$. Then there exists a unique strong solution to the non-linear stochastic differential equation

$$\begin{cases} dX_t = \sqrt{2}dB_t + \int \beta(X_t, u)\mu_t(du)dt, \qquad \mathcal{L}(X_0) = \xi \text{ given} \\ \mu_t = \mathcal{L}(X_t). \end{cases}$$

Moreover, we have

 $\sup_{0\leq t\leq T}\mathbb{E}[|X_t|^q]<\infty,$

for all T > 0.

- Our approach consist in the application of a fixed-point argument in an appropriate space of curves of probability measures.
- It was inspired by the work of V. Kolokoltsov [2].
- Assumptions (I) and (II) are more or less standard and easy to prove.
- Assumption (III) might be difficult to check though.
- It is possible to extended this approach to more general non-linear diffusions.
- Work in progress
 - Behaviour at infinity
 - Other kinds of non-linear diffusions

- Our approach consist in the application of a fixed-point argument in an appropriate space of curves of probability measures.
- It was inspired by the work of V. Kolokoltsov [2].
- Assumptions (I) and (II) are more or less standard and easy to prove.
- Assumption (III) might be difficult to check though.
- It is possible to extended this approach to more general non-linear diffusions.
- Work in progress
 - Behaviour at infinity
 - Other kinds of non-linear diffusions

(4) (2) (4) (2) (4)

- Our approach consist in the application of a fixed-point argument in an appropriate space of curves of probability measures.
- It was inspired by the work of V. Kolokoltsov [2].
- Assumptions (I) and (II) are more or less standard and easy to prove.
- Assumption (III) might be difficult to check though.
- It is possible to extended this approach to more general non-linear diffusions.
- Work in progress
 - Behaviour at infinity
 - Other kinds of non-linear diffusions

(4) (2) (4) (2) (4)

- Our approach consist in the application of a fixed-point argument in an appropriate space of curves of probability measures.
- It was inspired by the work of V. Kolokoltsov [2].
- Assumptions (I) and (II) are more or less standard and easy to prove.
- Assumption (III) might be difficult to check though.
- It is possible to extended this approach to more general non-linear diffusions.
- Work in progress
 - Behaviour at infinity
 - Other kinds of non-linear diffusions

(신문) 신문) 전문(신

- Our approach consist in the application of a fixed-point argument in an appropriate space of curves of probability measures.
- It was inspired by the work of V. Kolokoltsov [2].
- Assumptions (I) and (II) are more or less standard and easy to prove.
- Assumption (III) might be difficult to check though.
- It is possible to extended this approach to more general non-linear diffusions.
- Work in progress
 - Behaviour at infinity
 - Other kinds of non-linear diffusions

- Our approach consist in the application of a fixed-point argument in an appropriate space of curves of probability measures.
- It was inspired by the work of V. Kolokoltsov [2].
- Assumptions (I) and (II) are more or less standard and easy to prove.
- Assumption (III) might be difficult to check though.
- It is possible to extended this approach to more general non-linear diffusions.
- Work in progress
 - Behaviour at infinity
 - Other kinds of non-linear diffusions

- Our approach consist in the application of a fixed-point argument in an appropriate space of curves of probability measures.
- It was inspired by the work of V. Kolokoltsov [2].
- Assumptions (I) and (II) are more or less standard and easy to prove.
- Assumption (III) might be difficult to check though.
- It is possible to extended this approach to more general non-linear diffusions.
- Work in progress
 - Behaviour at infinity
 - Other kinds of non-linear diffusions

- Our approach consist in the application of a fixed-point argument in an appropriate space of curves of probability measures.
- It was inspired by the work of V. Kolokoltsov [2].
- Assumptions (I) and (II) are more or less standard and easy to prove.
- Assumption (III) might be difficult to check though.
- It is possible to extended this approach to more general non-linear diffusions.
- Work in progress
 - Behaviour at infinity
 - Other kinds of non-linear diffusions

Ethier, S. N. and Kurtz, T.G.

Markov processes, Characterisation and convergence. Wilev . 1986.

Kolokoltsov, V.

Nonlinear Markov processes and kinetic equations. Cambridge University Press, UK, 2010.

📎 Stroock, D.W. and Varadhan, S. R. S. Multidimentsional Diffusion Processes. Grundlehren der Math. Wisssenschaften, vol. 233. Springer, Berlin, 1979.

A.S. Sznitman.

Topics in propagation of chaos.

In Ecole d' Ete de Saint Flour XIX, Lecture Notes in Math., vol. 1464. Springer, Berlin, 1991.

Some References II

S. Benachour, B. Roynette, D. Talay, and P. Vallois. Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos.

Stochastic Process. Appl., 75 (2): 173–201, 1998.

- P. Cattiaux, A. Guillin, and E. Malrieu.

Probabilistic approach for granular media equations in the non-uniformly convex case.

Probab. Theory Relat. Fields., 140: 19–40, 2008.

S. Herrmann, P. Imkeller, and D. Peithmann. Large deviations and Kramer's type law for self-stabilizing diffusions. *The Annals of Applied Probability.*, **18** (4): 1379-1423, 2008.

F. Malrieu.

Convergence to equilibrium for granular media equations and their Euler schemes.

Ann. Appl. Probab., 13(2): 540-560, 2003.

Thank you very much for listening!

www.phacomics.com

< ロ > < 同 > < 回 > < 回 > < 回 > <

D.Santiago@warwick.ac.uk

ELE OQO