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Introduction

Behavior of diffusions with a small parameter noise
Let Xε be a random perturbation of the deterministic system:

dX (t)

dt
= b (X (t)) , X (0) = x. (1)

We consider the following perturbation of the above deterministic
system.

dXεt = bε (X
ε
t)dt+

√
εσε (X

ε
t)dWt (2)

if ε → 0 then the above SDE transformed to a deterministic
function. Let Q̃ε be the measure induced by Xε (·) on the space
of Rd-valued continuous functions on some arbitrary but finite
interval. Then {Xεt } the unique strong solution of 2 satisfies LDP
on C[0, 1] with good rate function:

Ix (f) =
1

2

∫ 1
0

ḟ (t) − b (f (t))
 ′ a−1f (t)

ḟ (t) − b (f (t))


where f ∈ H and H is a Cameron-Martin space, otherwise
Ix (f) = ∞.

A solution through Freidlin-Wentzell theory
Let us consider the problem of exit from a domain. We consider
the system
dXεt = b (X

ε
t)dt+

√
εσ (Xεt)dWt, Xεt ∈ Rd Xε0 = x(3)

in the open, bounded G ⊆ Rd and let ∂G be its boundary, which
we assume to be smooth for the sake of simplicity, b (·) , σ (·) are
uniformly Lipschitz continuous functions of d-dimensions and W
is d-dimensional BM. If we define the stopping time

τε = inf {t : Xεt /∈ G}

then events like this {τε < T } are rare events, indeed
P[τε < T ] → 0 as ε→ 0 and T <∞.

Motivated by Freidlin-Wentzell theory, we define the cost function
V (y, z, t) , inf

f∈C([0,1]):ft=z
Iy,t (f) (4)

= inf
g∈L2([0,t]):ft=z,fs=y+

∫s
0 b(fu)du+

∫s
0 σ(fu)ġdu

1

2

∫ t
0

|ġs|
2ds.

Basic Assumptions
A-1 The unique equilibrium point in G of the d-dimensional or-
dinary differential equation

ḟt = b (ft) (5)
is at 0 ∈ G, and

f0 ∈ G⇒ ∀t > 0, ft ∈ G and limt→∞ ft = 0
A-2 All the trajectories of the deterministic system 5 starting at
f0 ∈ ∂G converge to 0 as t→ ∞.
A-3 V̄ , infz∈∂GV (0, z) < ∞, where V (0, z) =

inft≥0V (0, z, t).
A-4 There exists M < ∞ such that for all ρ > 0 small enough
and all x, y with |x − y| ≤ ρ for some z ∈ ∂G ∪ {0} there is a
function g ∈ L2 such that ‖ġ‖L2 < M where

ft = x+

∫ t
0

b (fs)ds+

∫ t
0

σ (fs) ġds.

• Lower bound. For any ρ > 0 small enough, there is T <∞
such that

lim inf
ε→0 ε log inf

x∈Bρ
Px[τε < T ] > −V̄.

• Let σρ , inf {t : Xεt ∈ Bρ ∪ ∂G}. Then
lim
t→∞ lim sup

ε→0 log sup
x∈G

Px (σρ > t) = −∞.
• Upper bound. For any closed set N ⊂ ∂G

lim
ρ→0 lim sup

ε→0 ε log sup
y∈S2ρ

Py[Xεσρ ∈ N] ≤ − inf
z∈N

V (0, z)

where σρ , inf {t : Xεt ∈ Bρ ∪ ∂G}.

• For every ρ > 0 such that Bρ ⊂ G and all x ∈ G
lim
ε→0P[Xεσρ ∈ Bρ] = 1

Theorem
Assume (A-1)-(A-4) are satisfied. Then for all x ∈ G and all
δ > 0,

lim
ε→0Px

e
(V̄+δ)
ε > τε > e

(V̄−δ)
ε

 = 1.

Moreover, for all x ∈ G
lim
ε→0 ε logEx (τε) = V̄.

Connection with viscosity solution

We formulate the above result in the language of PDEs, in par-
ticular as a result of viscosity solution of a parabolic problem. We
set

Φε (t, x) = P [τε < t1] (6)
where t1 <∞ with boundary data

Φε (t, x) = 1 (t, x) ∈ [0, t1)× ∂G

Φε (t1, x) = 0 x ∈ Ḡ
Then 6 satisfies a linear equation

−
∂Φε (t, x)

∂t
− b (t, x)DxΦ

ε (t, x)− (7)

−
ε

2

∑
j

∑
i

aij (t, x)
∂2Φε (t, x)

∂xi∂xj
= 0.

We, now, make the logarithmic transformation:
Vε = −ε logΦε (t, x) (8)

then the dynammic programming PDE becomes

−
∂Vε (t, x)

∂t
− b (t, x)DxV

ε (t, x)−

−
ε

2

∑
i

∑
j

aij (t, x)
∂2Vε (t, x)

∂xi∂xj

+
1

2

∑
i

∑
j

aij (t, x)DxV
ε (DxV

ε) ′ = 0 (9)

and the boundary data become
Vε (t, x) = 0, (t, x) ∈ (0, t1)× ∂G

lim
t→t1Vε (t, x) = ∞, x ∈ G.

As ε→ 0 we have a first order PDE

−
∂V0 (t, x)

∂t
− b (t, x)DxV

0 (t, x)+

1

2

∑
i

∑
j

aij (t, x)
DxV0

 ′
DxV0

 = 0 (10)

and V0 has a representation in terms of control theory. We con-
sider the Hamiltonian function:

H (t, x, p) = −b (t, x)p+
1

2
p ′σσ

′
(t, x)p.

so that
−
∂V0

∂t
(t, x) +H (t, x, p) = 0

Since the Hamiltonian is quadratic and particular convex in p, we
can use the Legendre transform and may rewrite:

H (t, x, p) = sup
u∈Rd

{−up− L (t, x, u)}

= − inf
u∈Rd

{up+ L (t, x, u)}

where
L (t, x, u) = sup

p∈Rd
{−up−H (t, x, u)}

=
1

2
(u− b (t, x)) (σσ ′ (t, x))

−1
(u− b (t, x)) ′

−
∂V0 (t, x)

∂t
− inf
u∈Rd

{up+ L (t, x, u)} = 0 (11)
where

V0 = inf
∫ t1
0

1

2
(ẋ (s) − b (x, s))

σσT
−1 (t, x) (ẋ (s) − b (x (s))) ′ ds.

which together with the boundary data is
associated to the value function for a calculus of
variation problem and
(t, x, u) ∈ [0, t1]×G× Rd. Then from control
theory the solution to the
Hamilton-Jacobi-Bellman equation is represented
by a unique Lipschitz viscosity solution V0.
Therefore, the large deviation results stated as

lim
ε→0 ε logΦε (t, x) = −V0 (t, x)

where V0 (t, x) is the rate function. We
continue with two estimates of Vε:
Lemma
Suppose that ∂G is smooth. Then there exists
K > 0 satisfying

Vε (t, x) ≤ Kdist (x, ∂G)
t1 − t

, (12)

Lemma
For any M > 0 and d (x) = dist (x, ∂G) in
C2

Ḡ
 with d (x) = 0 for all x ∈ ∂G, there

exists KM > 0 such that
Vε (t, x) ≥Md (x) − KM (t1 − t) . (13)

We use the Barles-Perthame procedure in order
to define a viscosity supersolution and
subsolution of 11. Define

V∗ (t, x) = lim sup
(s,y)→(t,x)

Vε (s, y) ,

V∗ (t, x) = lim inf
(s,y)→(t,x)

Vε (s, y) .

These functions however are not necessarily
continuous. Therefore we conclude that V∗, V∗
are respectively subsolution and supersolution of
11 in (0, T)× Ḡ for every T < t1. Then using
equation 7 and its boundary data yields that any
viscosity subsolution is dominated by any
viscosity supersolution, V∗ ≥ V∗. However, by
consrtuction V∗ ≤ V∗. Although the terminal
data of the problem is infinite the stability result
still holds. Hence, 12 implies that V∗, V∗
converges to ∞ as t→ t1 uniformly on compact
subsets of G. However this convergence is
controlled by 13. These properties are used to
show the convergence of Vε → V0 = V∗ = V∗
which is the unique viscosity solution of HBJ
equation and Lipschitz continuous on [0, T ]× Ḡ.
Theorem
Assume that the properties of b, a, a−1
satisfied. Then Vε converges to V0 uniformly on
compact subsets of [0, t1]× Ḡ as ε→ 0.

Open Questions

It should be noted here that the choice of the
model is highly arbitrary. In particular, it can de-
veloped for Poisson process and more generally
for Lévy process. But, what happened when the
model is driven by a rough path or the coefficients
of the SDE are not Lipschitz continuous?

References
[1] FREIDLIN M.I. and WENTZELL A.D., Random

Pertubations of Dynamical Systems (2nd edition),
Springer, New York, 1998

[2] FLEMING W. H. and SONER M., Controlled Markov
Processes and Viscosity Solutions, (2nd edition),
Springer, New York, 1992.

Young Women In Probability, Bonn 2014


