Two-sided Parisian stopping time and the pricing of Parisian options

Angelos Dassios, Jia Wei Lim
Dept of Statistics, London School of Economics
Email: j.w.lim1@lse.ac.uk

Abstract
In this paper, we obtain a recursive formula for the density of the two-sided Parisian stopping time. This formula does not require any numerical inversion of Laplace transforms, and is similar to the formula obtained for the one-sided Parisian stopping time derived in Dassios and Lim. However, when we study the tails of the two distributions, we find that the two-sided stopping time has an exponential tail, while the one-sided stopping time has a heavier tail. We derive an asymptotic result for the tails of the two-sided stopping time distribution, and propose an alternative method of approximating the price of the two-sided Parisian option.

1 Introduction
A Parisian option is a path dependent option whose payoff depends on the path trajectory of the underlying asset. For example, the owner of a Parisian min-in option receives the payoff only if there is an excursion above or below an upper barrier b, which is of length greater than the window length D. The key to pricing this is to find the distribution of the two-sided Parisian stopping time for a Brownian motion, which is the first time the Brownian motion makes an excursion above or below a barrier b that is of length longer than D. We assume a Black-Scholes framework, as below.

Let S be the underlying asset following a geometric Brownian motion, and Q denote the risk neutral probability measure. The dynamics of S under Q is

$$dS_t = S_t(rdt + σdW_t), \quad S_0 = x,$$

where W_t is a standard Brownian motion under Q, and r and $σ$ are positive constants. For simplicity, we have assumed zero dividends. Let K denote the strike price of the option and we introduce the notations $m = \frac{1}{2}(r - σ^2)$, $b = \frac{1}{2}\ln\left(\frac{S_0}{K}\right)$, and $k = \frac{1}{2}\ln\left(\frac{S_0}{K}\right)$, so that the asset price $S_t = xe^{m(t-t_0)}$. We use the notation $g_{2k}(t) = \sup\{s \leq t \mid S_s = L\}$.

With the usual convention that sup$\emptyset = 0$ and inf$\emptyset = \infty$. We are interested here in $t - g_{2k}(t)$, which is the age of the excursion at time t. We further denote by $g_{2k}^1(t)$ and $g_{2k}^2(t)$ the excursion lengths when the underlying process is the Brownian motion W.

Without loss of generality, we let the window length $D = 1$, we now define

$$τ^+_b = \inf\{t \geq 0 \mid W_t \geq s_b^W \} \geq 1,$$
$$τ^-_b = \inf\{t \geq 0 \mid W_t \leq s_b^W \} \geq 1,$$
$$τ_b = τ^+_b \wedge τ^-_b.$$

Note that we have taken the window length of both sides to be the same (ie. 1 in our case).

2 Density of the two-sided Parisian stopping time
Let the barrier $b > 0$. We are only interested in the case when $\{T_b < 1\}$, where T_b is the first hitting time of level b, since if $T_b \geq 1$, $τ_b = 1$. We have the following recursive solution for the density of $τ_b$ on the set $\{T_b < 1\}$.

Theorem 2.1 For $b > 0$, we denote by $f_0(t, T_b < 1)$ the probability density function of the two-sided stopping time $τ_b$ on the set $\{T_b < 1\}$. We have

$$f_0(t, T_b < 1) = \sum_{k=0}^{n-1} (-1)^k L_k(t, 1),$$

for $n < t \leq n+1$, $n = 1, 2, \ldots$, for $t > 0$, where $L_k(t)$ is defined recursively as follows:

$$L_0(t) = 1\{0 < t < 1\} \cdot \frac{1}{\sqrt{\pi t}} \exp(-t) + 1\{t > 1\} \cdot \frac{2}{\sqrt{\pi t}} \exp(-t) - t\varphi\left(\frac{1}{t}\right),$$

$$L_{k+1}(t) = \int_{t-k}^{t} L_k(s) - s \frac{\pi}{\sqrt{\pi t}} ds,$$

for $t > k + 1$.

And for $b < 0$, we have

$$f_b(t, T_b < 1) = f_{-b}(t, T_{-b} < 1),$$

due to the symmetry of the standard Brownian motion. We prove that the two-sided stopping time $τ_b$ has an exponential tail, unlike the distribution of the one-sided stopping time $τ^-_b$. This is as expected because the one-sided case involves the hitting time of a Brownian motion, which is a heavy tailed distribution with infinite variance, while the two-sided one involves the hitting time of a Brownian motion reflected in zero, which has an exponential tail.

Theorem 2.2 We denote $F_0(t)$ as the tail of the distribution of the two-sided Parisian stopping time $τ_b$ with barrier 0. It has an exponential tail. As $t \to \infty$, we have

$$F_0(t) \sim 2e^{-\beta \sqrt{t}} - e^{-\beta t},$$

for some constant $\beta > 0$ such that $-\beta^* > 0$ is the unique solution of the equation

$$\int_{0}^{1} e^{-\beta s} \sqrt{s} ds + e^{-\beta} = 0.$$

We can compute β^* numerically to be 0.854.

Hence, we have an approximation for the density. As t gets larger,

$$f_0(t, T_b < 1) \sim 2\beta^* e^{-\beta^*(t+1)} \int_{0}^{1} e^{\beta s} \sqrt{s} ds \frac{b}{\sqrt{2\pi s^3}}.$$