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Abstract
In this paper, we obtain a recursive formula for

the density of the two-sided Parisian stopping time.
This formula does not require any numerical inversion
of Laplace transforms, and is similar to the formula
obtained for the one-sided Parisian stopping time de-
rived in Dassios and Lim. However, when we study
the tails of the two distributions, we find that the two-
sided stopping time has an exponential tail, while the
one-sided stopping time has a heavier tail. We de-
rive an asymptotic result for the tail of the two-sided
stopping time distribution and propose an alternative
method of approximating the price of the two-sided
Parisian option.

1 Introduction

A Parisian option is a path dependent option
whose payoff depends on the path trajectory of
the underlying asset. For example, the owner of
a Parisian min-in option receives the payoff only
if there is an excursion above or below the level
L which is of length greater than the window
length D. The key to pricing this is to find the
distribution of the two-sided Parisian stopping
time for a Brownian motion, which is the first
time the Brownian motion makes an excursion
above or below a barrier b that is of length longer
than D. We assume a Black Scholes framework,
as below.

Let S be the underlying asset following a
geometric Brownian motion, and Q denote the
risk neutral probability measure. The dynamics
of S under Q is

dSt = St(rdt + σdWt), S0 = x,

where Wt is a standard Brownian motion un-
der Q, and r and σ are positive constants. For
simplicity, we have assumed zero dividends. Let
K denote the strike price of the option and we

introduce the notations m = 1
σ

(
r − σ2

2

)
, b =

1
σ ln

(
L
x

)
, and k = 1

σ ln
(
K
x

)
, so that the asset

price St = xeσ(mt+Wt). We use the notation

gSL,t = sup{s ≤ t|Ss = L}
dSL,t = inf{s ≥ t|Ss = L},

with the usual convention that sup ∅ = 0 and
inf ∅ = ∞. We are interested here in t − gSL,t,

which is the age of the excursion at time t. We fur-
ther denote by gWL,t and dWL,t the excursion lengths

when the underlying process is the Brownian mo-
tion W .

Without loss of generality, we let the window
length D = 1, we now define

τ+
b = inf{t ≥ 0|1Wt>b(t− g

W
b,t) ≥ 1},

τ−b = inf{t ≥ 0|1Wt<b(t− g
W
b,t) ≥ 1},

τb = τ+
b ∧ τ

−
b .

Note that we have taken the window length of
both sides to be the same (ie. 1 in our case).

2 Density of the two-sided

Parisian stopping time

Let the barrier b > 0. We are only interested
in the case when {Tb < 1}, where Tb is the first
hitting time of level b, since if Tb ≥ 1, τb = 1.
We have the following recursive solution for the
density of τb on the set {Tb < 1}.
Theorem 2.1 For b > 0, we denote by
fb(t, Tb < 1) the probability density function
of the two-sided stopping time τb on the set
{Tb < 1}. We have

fb(t, Tb < 1) =

n−1∑
k=0

(−1)k Lk(t− 1),

for n < t ≤ n+ 1, n = 1, 2, ..., for t > 0, where
Lk(t) is defined recursively as follows:

L0(t) = 1{0<t≤1}
1

π
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t
e−

b2
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+1{t>1}
2
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,

Lk+1(t) =

∫ t−k

1
Lk(t− s)

√
s− 1

πs
ds,

for t > k + 1.

And for b < 0, we have

fb(t, Tb < 1) = f−b(t, T−b < 1),

due to the symmetry of the standard Brownian
motion. We prove that the two-sided stopping
time τ0 has an exponential tail, unlike the distri-
bution of the one-sided stopping time τ−0 . This
is as expected because the one-sided case involves
the hitting time of a Brownian motion, which is
a heavy tailed distribution with infinite expecta-
tion, while the two-sided one involves the hitting
time of a Brownian motion reflected in zero, which
has an exponential tail.

Theorem 2.2 We denote F̄0(t) as the tail of
the distribution of the two-sided Parisian stop-
ping time τ0 with barrier 0. It has an exponen-
tial tail. As t→∞, we have

F̄0(t) ∼ 2e−β
∗
e−β

∗(t−1),

for some constant β∗ > 0 such that −β∗ is the
unique solution of the equation∫ 1

0

e−βs√
s
ds +

e−β

β
= 0.

We can compute β∗ numerically to be 0.854.

Hence, we have an approximation for the density.
As t gets larger,

fb(t, Tb < 1) ∼ 2β∗e−β
∗(t+1)

∫ 1

0
eβ
∗s−b2

2s
b√

2πs3
dt.

3 Numerical Results

We can then use this result to price two-sided
Parisian options. The formula can be found in the
paper, and we show some numerical results below.
The table below presents the survival function for
both τ0 and τ−0 , computed using a time step of
h = 0.001 with R.

Table 1: One and two-sided survival functions for
0 < t ≤ 10

t F̄0(t) F̄−0 (t) t F̄0(t) F̄−0 (t)
1.5 0.555931 0.775033 6.0 0.015114 0.403422
2.0 0.369469 0.681770 6.5 0.010779 0.387956
2.5 0.242144 0.614236 7.0 0.007910 0.374142
3.0 0.159600 0.563552 7.5 0.006003 0.361704
3.5 0.105503 0.523602 8.0 0.004726 0.350429
4.0 0.070093 0.491082 8.5 0.003866 0.340146
4.5 0.046893 0.463944 9.0 0.003278 0.330718
5.0 0.031679 0.440854 9.5 0.002872 0.322033
5.5 0.021687 0.420896 10.0 0.002586 0.313997

We can see that the two-sided survival func-
tion goes to 0 much faster than the one-sided case.

The following graph compares the density
functions of the one and two-sided case. The red
line represents f0(t) while the black line f−0 (t),
plotted against time. This graph suggests that
f−0 (t) has a heavier tail.

Figure 1: f0(t) and f−0 (t) for 0 < t ≤ 50

The following graph depicts the tails F̄0(t) (black)
and the approximation Cβ∗e

−β∗t (red).

Figure 2: F̄0(t) and Cβ∗e
−β∗t for 0 < t ≤ 20

It suggests that the asymptotic provides a good
approximation for the survival function.

We also provide some numerical results for
the prices of the two-sided Parisian options. The
following table gives the prices for different values
of initial asset price S0 and window length D,
for parameters K = 95, L = 90, T = 1 year,
r = 0.05 and σ = 0.2. These values are obtained
using the recursive formula for t ≤ 4, and for
t > 4, the asymptotics is used.

Table 2: Price of Parisian min-in call
S0 1 week 2 weeks 1 month 2 months
80 2.817708 2.809610 2.660829 2.123282
82 3.471103 3.430688 3.145066 2.482966
84 4.203278 4.101558 3.737759 3.096815
86 5.050461 4.978642 4.724678 4.261088
88 6.535228 6.639547 6.589191 6.342500
90 6.897115 6.895460 6.891562 6.872088.


