

Problem

The extreme value theory has its foundations in finding the asymptotic law of the maximum observation $X_{n,n} = \max(X_1, ..., X_n)$. It is said that the underlying df F of the observations is attracted to some dfH if for some sequences $(a_n > 0)_{n>1}$ and $(b_n)_{n>1}$, we have for any continuity point $x \in \mathbb{R}$ of H,

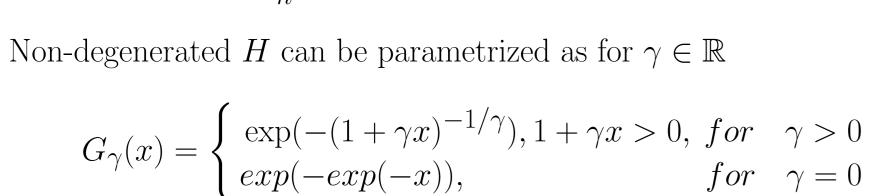
 $\lim_{n \to \infty} \mathbb{P}(\frac{X_{n,n} - b_n}{a_n} \le x) = \lim_{n \to \infty} F^n(a_n x + b_n) = H(x).$

Our problem consists to find the asymptotic law of the functional Hill stochastic process when F is in the Weibull domain. This stochastic process generalised the Hill's statistic of the EVI and is based on extreme values of independent and identically distributed rv's X_1, \ldots, X_n . The process is defined as follows :

k(n) $T_n(f) = \sum_{j=1}^{n} f(j) \left(\log(X_{n-j+1,n}) - \log(X_{n-j,n}) \right).$

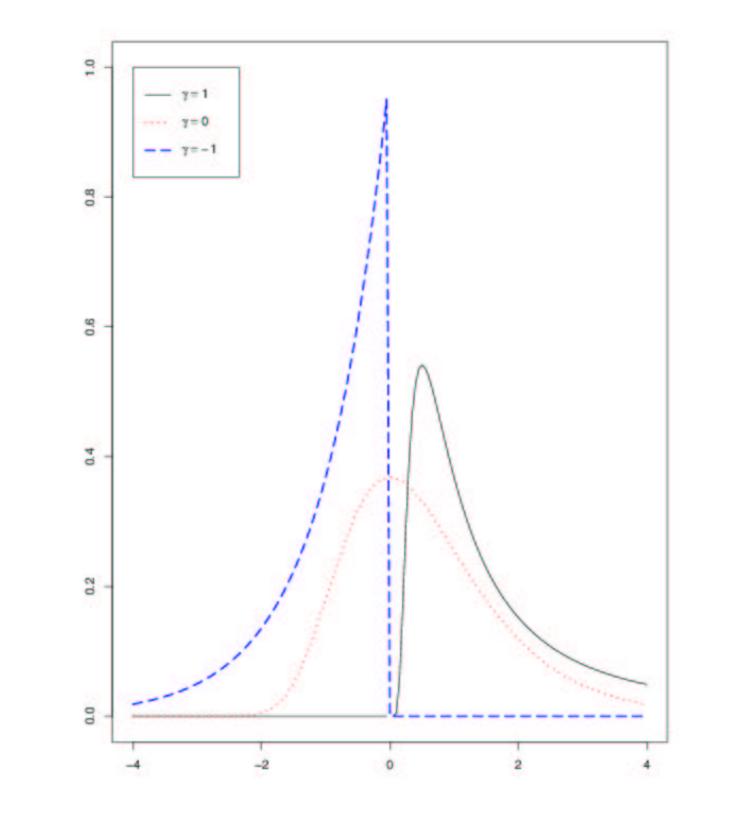
k(n) is a sequence of integers satisfying $1 \leq k(n) < n$. f(j) is a real and increasing function of $j \in \mathbb{N}$ such that f(0) = 0. The functional Hill process was introduced by Deme et al. (2012) [2]. From this processus is derived the Diop and Lo (2006) [1] generalization of Hill's statistic. Its corresponds to the continuous statistic $T_n(f)$ for $f(j) = j^{\tau}, \tau > 0$. Diop and Lo proved its asymptotic normality for any γ , but only for $\tau > 1/2$. The Hungarian Gaussian Approximation used could not allow to find the asymptotic law for $\tau \leq 1/2$. The functional form $T_n(f)$ has been extensively studied for Frechet and Gumbel cases by Deme *et al.* (2012). Some conditions under wich $T_n(f)$ has a Gaussian limiting process were established. When particularized for $f(j) = j^{\tau}$, Deme *et al.* get asymptotic normality for $\tau \geq 1/2$ and not for $0 < \tau < 1/2$. Deme et al. results are based on sums of independent rv's, and then the Kolmogorov Theorem for centred rv's applies

	Methods
oroce oehav	is emartingale results to characterize the asymptotic law of ess $W_k(f)$. We next apply the findings to determine the asymptotic vior of the functional Hill process for small parameters within eme Value Theory (EVT) field.
seque	ider the filtration $\mathcal{F}_k = \sigma(E_1,, E_k), k \geq 1$ and remark ence $(W_k)_{k\geq 1}$ is adapted with respect to $(\mathcal{F}_k)_{k\geq 1}$. We have ving intermediate results.

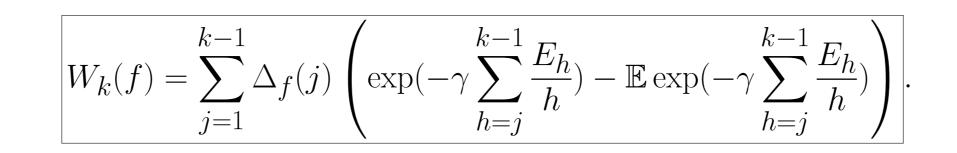


G is named as the Generalized Extreme Value (GEV) distribution. It is said that F is in the domain of attraction of G_{γ} , hereby denoted as : $F \in D(G_{\gamma})$. The parameter γ is called the extreme value index (EVI).

Although the parameter γ in the GEV is continuous, the three cases $\gamma < 0, \gamma = 0$ and $\gamma > 0$, behave radically differently. These cases are respectively named the Weibull, Gumbel and Frechet cases. In all these cases, the Hill statistic is used to estimate γ . The following figure gives a representation of these three cases



In our work we show that the law of the functional Hill process is derived when F is in the Weibull domain from the following process :



where E_1, E_2, \ldots are independent exponential standard rv's, $\gamma > 0$ and $\Delta_f(j) = f(j) - f(j-1).$

Our best achievement is the characterization of $W_k(f)$ and its use to find the asymptotic behavior of $T_n(f)$.

Contribution

Theorem 1 The sequence $W_k(f)$ is a supermatingale with respect to \mathcal{F}_k . Furthermore, it converges almost-surely (a.s) to random variable $W_{\infty}(f)$ with finite expectation whenever

$$\limsup_{k \to +\infty} k^{-\gamma} \sum_{j=L}^{k-1} \overline{f}(j) j^{\gamma-1/2} < +\infty \tag{K1}$$

holds.

Corollary 1 For $f(j) = f_{\tau}(j) = j^{\tau}, 0 < \tau < 1/2, W_k(f_{\tau})$ converges almost surely to a finite random variable $W_{\infty}(\tau)$.

Results

We resume the extreme value problem. We will suppose without any loss of generality that the observations X_i are greater than one so that $T_n(f)$. Now in the sequel we simplify the notation of k(n) to k. We combine Renyi's and classical representation of $Y_j = \log X_j$. Denote by $G(y) = F(e^y)$ the df of $\log X_i$. Remind that $G \in D(G_{-\gamma})$ if and only if $F \in D(G_{-\gamma})$. We then start with the simplest case of functions $F \in D(G_{-\gamma})$, that is

$$y_0 - G^{-1}(1 - u) = u^{\gamma}, 0 \le u \le 1, \tag{1}$$

where y_0 is the upper endpoint of G. We use here the index $-\gamma < 0$ instead of $\gamma < 0$. We are going to characterize the asymptotic law $T_n(f)$ under the condition (K1).

Theorem 2 Let $X_1, X_2, ...$ be a sequence of iid rv's with common df G. Let f(j) be an increasing function of the integer $j \ge 1$ such that (K1) holds and let for any $\leq 1 \leq k \leq n$,

$$A_{k,n}(f) = f(k-1) - \sum_{j=1}^{k-1} (f(j) - f(j-1)) \exp\left(-\sum_{h=j}^{k-1} \log(1+\gamma/h)\right)$$

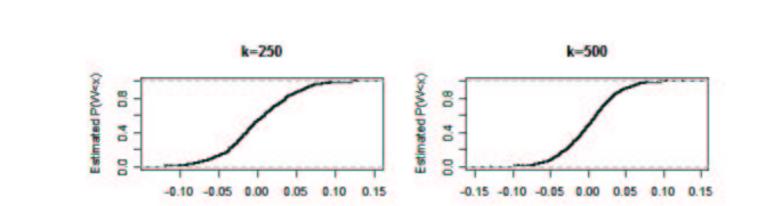
Then

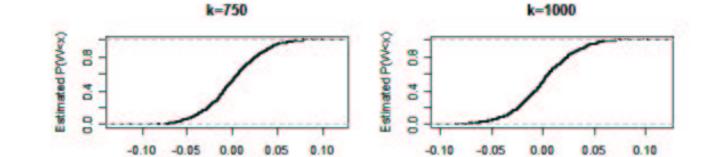
$$W_{k-1,n}^*(f) = A_{k,n}(f) - T_n(f) / (y_0 - Y_{n-k+1,n})$$

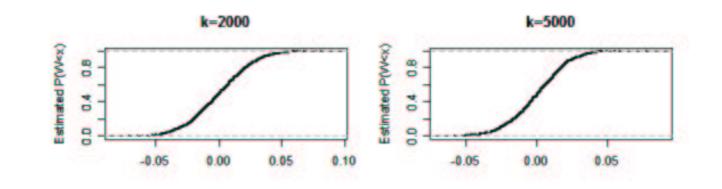
converges in distribution to the finite random variable $W_{\infty}(f)$ defined in Theorem 1. Further if $f(j) = f_{\tau}(j) = j^{\tau}$, $0 < \tau \leq 1/2$, then $W_{k-1 n}^*(f_{\tau})$ converges in distribution to $W_{\infty}(\tau)$ defined in Corollary 1.

The law of $W_{\infty}(f)$ is unusual. We use computer-based methods for approximating this law. Simulation studies show that the empirical df based of B0 = 1000 replications are very stable from k = 2000. We proceed as follows. We fix $\tau, 0 < \tau < 1/2, \gamma > 0$ and $k \geq 1/2, \gamma > 0$ 2000. At each step B from 1 to B0 = 1000, we generate standard

We describe the asymptotic behavior of the functional Hill process when F is in the weibull domain and particulary when $f(j) = j^{\tau}$ for small parameters $0 < \tau < 1/2$. By this way we complete the open problem consisting to characterize the asymptotic behavior of the functional Hill process $T_n(f)$ for each domain of attraction.







For an application we illustrate how the law G_{∞} of $W_{\infty}(1/4)$ may be used to do a statistical test for four models. We test the hypothesis that $F \in D(G_{-\gamma})$. We use here the following approximation :

Discussion We indeed remark that for the Weibull simple case, the law of the functional Hill process is found and particulary for $f(j) = j^{\tau}, 0 < \tau < 1/2$. For the general case, we have the following Karamata representation when F is in the Weibull case of parameter $\gamma > 0$: $x_0(F) < \infty$ and $y_0 - G^{-1}(1-u) = c(1+p(u))u^{\gamma} \exp(\int_u^1 b(t)t^{-1}dt), \qquad (2)$ where $(p(u), b(u)) \to (0, 0)$ as $u \to 0$. So the results depends on the auxilliary functions p and b. If some further conditions on b and p are fulfilled, $T_n^*(f) = \frac{T_n(f)}{u_0 - Y_{n-k+1,n}}$ behaves as $W_{k,n}^*$ as in the present case and then the law should be the same. Nevertheless, we can include in the statistical tests some models with specific forms of $b(\cdot)$ as shown in the precedent table.

Funding

exponential samples $E_1(B), \ldots, E_k(B)$. Then we compute W_k^* denoted by $W_k^*(B)$. We finally consider the empirical df, denoted by G_k , based on $W_k^*(1), \ldots, W_k^*(B0)$. Since G_k is stable in the sense that it does not significally change from k = 2000, we do approximate the $df G_{\infty}$ of $W_{\infty}(\tau)$ by G_k for k large enough. We illustrate in the next figure the df G_k for k = 250, 500, 750, 1000, 2000, 500 for $\gamma = 1$ and $\tau = 1/4$. Here for instance, we infer that the support of G_{∞} is [-0.5, 0.5]. On the whole, the figures clearly establish stability and support our proposal.

For users interested in using our method, we provide an executable file located at :

http://www.ufrsat.org/lerstad/resources/lmhfw1.exe for the computation of $P(W_{\infty}(\tau) \leq x) = G_{\infty}(x)$ and $P(|W_{\infty}(\tau))| \leq 1$ $|x|) = G_{\infty}(|x|) - G_{\infty}(-|x|)$ for $x \in \mathbb{R}$.

 $T_n^*(f) = \frac{T_n(f)}{y_0 - \log X_{n-k+1,n}} \approx \frac{T_n(f)}{\log X_{n,n} - \log X_{n-k+1,n}}.$

Here is the result :

Models	Quantile functions	$T_n^*(f_\tau)$	P-values
Weibull 1	$F^{-1}(1-u) = \exp(1-u^{\gamma})$	3.16	67.4%
Weibull 2	$F^{-1}(1-u) = \exp(1 - u^{\gamma}(1+u^9))$	0.0367	38.9%
	$F^{-1}(1-u) = \exp(1 - u^{\gamma}(1+u^8))$	0.048	27.3%
	$F^{-1}(1-u) = \exp(1 - u^{\gamma}(1+u^7))$	3.063	13.2%
	$F^{-1}(1-u) = \exp(1 - u^{\gamma}(1+u^6))$	3.0725	10.4%
	$F^{-1}(1-u) = \exp(1 - u^{\gamma}(1+u^5))$	3.097	2%
	$F^{-1}(1-u) = \exp(1 - u^{\gamma}(1+u^4))$	3.17	0%
Stand. Exp.	$F^{-1}(1-u) = -\log u$	3.77	0%
Pareto	$F^{-1}(1-u) = u^{-1}$	19.755	0%

This work was supported in part by the French Government through the PHD Scholarships Programm and was in collaboration with MAPMO Laboratory at the Orleans University, France.

Références

[1] Diop, A. and Lo G.S. (2006). Generalized Hill's estimator. Far East J. Theor. Stat., 20, 129-149

[2] Dème E., Lo G.S. and Diop, A. (2012). A functional generalized Hill process and applications. International Journal of Statistics and Probability, 1, 250-268

[3] Karlin, S. and Howard M., Taylor (1975). A First Course in Stochastic Processes. Academic Press.