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Nonequilibrium (mass reservoirs at density ρ1, ρ2)

ρ : macroscopic mass density

J : macroscopic mass current

J = −D∇ρ (Fick’s law)

D > 0 diffusion coefficient and

%(x) =
ρ1(L− x1) + ρ2x1

L
(Linear profile)

I Bunimovich and Sinai, 1981 (Diffusion for the periodic Lorentz gas)
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Microscopic description Macroscopic description{
ẋ = v
v̇ = Fobs

Newtonian dynamics
(Lorentz gas)

=⇒ ∂t% = D∆%, % =

∫
f dv

Hydrodynamic equation
(diffusion equation)

Mesoscopic description

(∂t + v · ∇x)f︸ ︷︷ ︸
transport

= L(f )︸︷︷︸
collisions

Linear kinetic equation

Alessia Nota (Sapienza) Derivation of the Fick’s law. May 26, 2014 4 / 17



Microscopic description Macroscopic description{
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Background

Test particle moving in a random configuration of obstacles in Rd .
µ: intensity of the obstacles; ε > 0 ratio between micro and macro scale.

Low density limit: t → εt, x → εx , µε = ε−(d−1)µ.

(rarefied gas, mean free path O(1))

(∂t + v · ∇x)f (x , v , t)︸ ︷︷ ︸
transport

= Lf (x , v , t)︸ ︷︷ ︸
collisions

(Linear Boltzmann)

Lf (v) = µ

∫ 1

−1

dρ{f (v ′)− f (v)}

I Gallavotti, 1969 (Poisson distribution of hard sphere scatterers)

I Spohn, 1978 (more general distribution of scatterers)

I Desvillettes, Pulvirenti, 1999 (long range interaction)
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Background

Scaling: t → εt, x → εx ,
µε = ηεε

−(d−1)µ, ηε slowly diverging.

Asymptotic equation

(∂t + v · ∇x)f (x , v , t) ∼ ηεLf (x , v , t)

ε→ 0?

Idea: look at a longer time scale in which the equilibrium starts to evolve t → ηεt
=⇒ diffusion for the position variable

I Erdos, Salmhofer, Yau, 2008 (linear Quantum Boltzmann)

I Bodineau, Gallagher, and Saint-Raymond, 2013 (linear Boltzmann)

I Basile, N., Pulvirenti, 2013 (linear Landau)
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The model
Poisson distribution of fixed hard disks cN = (c1, . . . , cN) in Λ = (0, L)× R.
µ > 0 intensity.

Mass reservoirs: free point particles at equilibrium at densities ρ1, ρ2.

P(dcN) = e−µ|A| µ
N

N! dc1 . . . dcN , A ⊂ Λ.

Scaling: µ→ µε = ε−1ηεµ
[
Ass : ε

1
2 η6
ε −→
ε→0

0
]
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The model

Initial probability distribution f0 = f0(x , v). Boundary value

fB(x , v) :=

{
ρ1M(v) if x ∈ {0} × R, v1 > 0

ρ2M(v) if x ∈ {L} × R, v1 < 0

We look at the one-particle correlation function

fε(x , v , t) = Eε[fB(T−(t−τ)
cN

(x , v))χ(τ > 0)] + Eε[f0(T−t
cN

(x , v))χ(τ = 0)]

Eε[·]: expectation w.r.t. the measure Pε.
T−t

cN
(x , v) : (backward) Hamiltonian flow.

t − τ : first (backward) hitting time with ∂Λ. (τ = τ(x , v , t, cN))

(τ = 0 if T−s
cN

(x , v), s ∈ [0, t], never hits the boundary)
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The Model

f S
ε (x , v) stationary solution of the microscopic dynamics

Observables

Stationary mass flux: JS
ε (x) = ηε

∫
S1

v f S
ε (x , v) dv

Stationary mass density: %S
ε (x) =

∫
S1

f S
ε (x , v) dv

JS
ε : total amount of mass through a unit area in a unit time.

ηε ; (time scaling necessary for diffusion! )
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Main results

Theorem 1 [Basile, N., Pezzotti, Pulvirenti]

For ε sufficiently small there exists a unique L∞ stationary solution f S
ε for the

microscopic dynamics. Moreover

f S
ε → %S as ε→ 0

where %S is the stationary solution of the heat equation

%S(x) =
ρ1(L− x1) + ρ2x1

L
.

The convergence is in L2((0, L)× S1).

I Boundary conditions depend on the space variable only through x1

⇒ f S
ε , %S inherits the same feature

⇒ convergence in L2((0, L)× S1) instead of L2(Λ× S1).

I For the convergence of the stationary solutions it is enough ε
1
2 η5
ε → 0.
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Theorem 2 [Fick’s law] [Basile, N., Pezzotti, Pulvirenti]

JS
ε + D∇x%

S
ε → 0 as ε→ 0 in D′(0, L)

where D =
1

4π

∫
S1

dv v ·
(
− L

)−1
v (Green -Kubo).

JS = lim
ε→0

JS
ε (x) in L2(0, L)

and JS = −D∇%S = −D ρ2−ρ1

L (%S linear profile).

I JS does not depend on the space variable.

I Diff. coeff. D determined by the behavior of the system at equilibrium.

(Same D of the time dependent problem! )
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The Boltzmann equation as a bridge

Introduce the stationary linear Boltzmann equation
(
v · ∇x

)
hS
ε (x , v) = ηε LhS

ε (x , v),

hS
ε (x , v) = ρ1, x ∈ {0} × R, v1 > 0,

hS
ε (x , v) = ρ2, x ∈ {L} × R, v1 < 0,

Lf (v) = µ

∫ 1

−1

dρ
[
f (v ′)− f (v)

]
f ∈ L1(S1)

v ′ = v − 2(n · v)n, n = n(ρ)

{v(t)}t≥0 Markov jump process

x(t) =
∫ t

0
v(s)ds
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Strategy

1 There exists a unique stationary solution hS
ε ∈ L∞((0, L)× S1) of the linear

Boltzmann equation. As ε→ 0

hS
ε → %S in L2((0, L)× S1) (Markov part)

2 There exists a unique stationary solution f S
ε ∈ L∞((0, L)× S1) for the

microscopic dynamics such that

‖hS
ε − f S

ε ‖∞ ≤ Cε
1
2 η5
ε (Markovian approximation)

(The memory effects preventing the Markovianity are negligible!)

Stationary solutions as the long time asymptotics of hε(t) and fε(t)?

Pb: control the convergence rates, as t →∞, with respect to ε

Trick: characterize instead hS
ε and f S

ε in terms of the Neumann series!
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Markov part

hε solution of the linear Boltzmann equation
with boundary conditions ρ1, ρ2 and initial data f0.

hε(x , v , t) = hout
ε (x , v , t) + hin

ε (x , v , t) = hout
ε (x , v , t) + S0

ε (t)f0
Markov sgr.

hout
ε : backward trajectories hitting the boundary.

hin
ε : trajectories which never leave Λ.

hS
ε hS

ε = hout
ε (t0) + S0

ε (t0)hS
ε , t0 > 0

⇒ hS
ε =

∑
n≥0

(S0
ε (t0))nhout

ε (t0) (Neumann series)

Convergence of the Neumann series ⇒ existence and uniqueness of hS
ε

hS
ε → %S Hilbert expansion technique
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Pathological configuration in the Markovian approximation

Backward Interference Backward Recollision
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Proof of Theorem 2

By standard computations (Hilbert expansion technique)

hS
ε = %S +

1

ηε
h(1) +

1

ηε
Rηε

But

h(1)(v) = L−1(v · ∇x%
S) =

ρ2 − ρ1

L
L−1(v1)

Rηε = O(
1
√
ηε

),

∫
S1

v%Sdv = 0

⇓

ηε

∫
S1

vhS
ε (x , v)dv

∼ JS
ε (x) in L∞

(Ass.)

= −D∇x%
S + O(

1
√
ηε

)

∼D∇x%S
ε in D′

(Theorem 1)
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Thanks for your attention!
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