Derivation of the Fick's law for the Lorentz model in a low density regime

Alessia Nota

Sapienza, Università di Roma

May 26, 2014

Joint work with G. Basile, F. Pezzotti, M. Pulvirenti



 $\rho_2$ 

Nonequilibrium (mass reservoirs at density  $\rho_1$ ,  $\rho_2$ )

- $\rho$  : macroscopic mass density
- J : macroscopic mass current

$$J = -D\nabla\rho \qquad (Fick's law)$$

D > 0 diffusion coefficient and

$$\varrho(x) = \frac{\rho_1(L-x_1) + \rho_2 x_1}{L}$$
 (Linear profile)

Bunimovich and Sinai, 1981 (Diffusion for the periodic Lorentz gas)

#### **Microscopic description**

$$\begin{cases} \dot{x} = v \\ \dot{v} = \mathsf{F}_{obs} \end{cases}$$

Newtonian dynamics (Lorentz gas)

#### Macroscopic description

$$\partial_t \varrho = D\Delta \varrho, \quad \varrho = \int f \, dv$$

Hydrodynamic equation (diffusion equation)

**Mesoscopic description** 



transport

collisions

Linear kinetic equation

#### **Microscopic description**

$$\begin{cases} \dot{x} = v \\ \dot{v} = \mathsf{F}_{obs} \end{cases}$$

Newtonian dynamics (Lorentz gas)

#### Macroscopic description

$$\partial_t \varrho = D\Delta \varrho, \quad \varrho = \int f \, dv$$

Hydrodynamic equation (diffusion equation)

**Mesoscopic description** 



collisi

Linear kinetic equation

# Background

Test particle moving in a random configuration of obstacles in  $\mathbb{R}^d$ .  $\mu$ : intensity of the obstacles;  $\varepsilon > 0$  ratio between micro and macro scale.

**Low density limit:**  $t \to \varepsilon t$ ,  $x \to \varepsilon x$ ,  $\mu_{\varepsilon} = \varepsilon^{-(d-1)}\mu$ .

(rarefied gas, mean free path O(1))

| $(\partial_t + \mathbf{v} \cdot \nabla_x)$ | f(x, v, t) = k                   | f(x, v, t)                   | (Linear Boltzmann) |
|--------------------------------------------|----------------------------------|------------------------------|--------------------|
| transpol                                   | rt                               | collisions                   |                    |
|                                            | $\mathcal{L}f(\mathbf{v}) = \mu$ | $\int_{-1}^{1} d\rho \{f(v'$ | $) - f(v) \}$      |

Gallavotti, 1969 (Poisson distribution of hard sphere scatterers)

- Spohn, 1978 (more general distribution of scatterers)
- Desvillettes, Pulvirenti, 1999 (long range interaction)

## Background

**Scaling:** 
$$t \to \varepsilon t, x \to \varepsilon x,$$
  
 $\mu_{\varepsilon} = \eta_{\varepsilon} \varepsilon^{-(d-1)} \mu, \eta_{\varepsilon}$  slowly diverging.

Asymptotic equation

$$(\partial_t + \mathbf{v} \cdot \nabla_x) f(x, \mathbf{v}, t) \sim \eta_{\varepsilon} \mathcal{L} f(x, \mathbf{v}, t)$$

 $\varepsilon \rightarrow 0?$ 

- Idea: look at a longer time scale in which the equilibrium starts to evolve  $t \rightarrow \eta_{\varepsilon} t$  $\implies$  diffusion for the position variable
  - Erdos, Salmhofer, Yau, 2008 (linear Quantum Boltzmann)
  - Bodineau, Gallagher, and Saint-Raymond, 2013 (linear Boltzmann)
  - Basile, N., Pulvirenti, 2013 (linear Landau)

# The model

Poisson distribution of fixed hard disks  $\mathbf{c}_N = (c_1, \ldots, c_N)$  in  $\Lambda = (0, L) \times \mathbb{R}$ .  $\mu > 0$  intensity.

Mass reservoirs: free point particles at equilibrium at densities  $\rho_1$ ,  $\rho_2$ .



$$\mathbb{P}(dc_N) = e^{-\mu|A|} \frac{\mu^N}{N!} dc_1 \dots dc_N, \qquad A \subset \Lambda.$$
Scaling:  $\mu \to \mu_{\varepsilon} = \varepsilon^{-1} \eta_{\varepsilon} \mu$ 

$$\begin{bmatrix} Ass : \varepsilon^{\frac{1}{2}} \eta_{\varepsilon}^6 \longrightarrow 0 \\ \varepsilon \to 0 \end{bmatrix}$$
Alessia Nota (Sapienza)
Derivation of the Fick's law.
May 26, 2014

<u>Alessia Nota</u> (Sapienza)

Derivation of the Fick's law

7 / 17

## The model

Initial probability distribution  $f_0 = f_0(x, v)$ . Boundary value

$$f_B(x,v) := \begin{cases} \rho_1 M(v) & \text{if } x \in \{0\} \times \mathbb{R}, \quad v_1 > 0\\ \rho_2 M(v) & \text{if } x \in \{L\} \times \mathbb{R}, \quad v_1 < 0 \end{cases}$$

We look at the one-particle correlation function

 $f_{\varepsilon}(x,v,t) = \mathbb{E}_{\varepsilon}[f_B(T_{c_N}^{-(t-\tau)}(x,v))\chi(\tau>0)] + \mathbb{E}_{\varepsilon}[f_0(T_{c_N}^{-t}(x,v))\chi(\tau=0)]$ 

$$\begin{split} &\mathbb{E}_{\varepsilon}[\cdot]: \text{ expectation w.r.t. the measure } \mathbb{P}_{\varepsilon}. \\ &\mathcal{T}_{\mathsf{c}_N}^{-t}(x,v): \text{ (backward) Hamiltonian flow.} \\ &t-\tau: \text{ first (backward) hitting time with } \partial \Lambda. \quad (\tau=\tau(x,v,t,\mathsf{c}_N)) \\ &(\tau=0 \text{ if } \mathcal{T}_{\mathsf{c}_N}^{-s}(x,v), \ s\in[0,t], \text{ never hits the boundary}) \end{split}$$

## The model

Initial probability distribution  $f_0 = f_0(x, v)$ . Boundary value

$$f_B(x,v) := \begin{cases} \rho_1 M(v) & \text{if } x \in \{0\} \times \mathbb{R}, \quad v_1 > 0\\ \rho_2 M(v) & \text{if } x \in \{L\} \times \mathbb{R}, \quad v_1 < 0 \end{cases}$$

We look at the one-particle correlation function

$$f_{\varepsilon}(x,v,t) = \mathbb{E}_{\varepsilon}[f_B(T_{\mathbf{c}_N}^{-(t-\tau)}(x,v))\chi(\tau>0)] + \mathbb{E}_{\varepsilon}[f_0(T_{\mathbf{c}_N}^{-t}(x,v))\chi(\tau=0)]$$

$$\begin{split} &\mathbb{E}_{\varepsilon}[\cdot]: \text{ expectation w.r.t. the measure } \mathbb{P}_{\varepsilon}. \\ &\mathcal{T}_{\mathbf{c}_{N}}^{-t}(x,v): \text{ (backward) Hamiltonian flow.} \\ &t-\tau: \text{ first (backward) hitting time with } \partial \Lambda. \quad (\tau = \tau(x,v,t,\mathbf{c}_{N})) \\ &(\tau = 0 \text{ if } \mathcal{T}_{\mathbf{c}_{N}}^{-s}(x,v), s \in [0,t], \text{ never hits the boundary}) \end{split}$$

# The Model

 $f_{\varepsilon}^{S}(x, v)$  stationary solution of the microscopic dynamics

Observables

# The Model

### $f_{\varepsilon}^{S}(x, v)$ stationary solution of the microscopic dynamics

#### Observables

Stationary mass flux: 
$$J^S_{\varepsilon}(x) = \eta_{\varepsilon} \int_{S_1} v f^S_{\varepsilon}(x, v) dv$$

Stationary mass density:

$$\varrho_{\varepsilon}^{S}(x) = \int_{S_{1}} f_{\varepsilon}^{S}(x, v) \, dv$$

 $J_{\varepsilon}^{S}$ : total amount of mass through a unit area in a unit time.  $\eta_{\varepsilon} \longrightarrow$  (time scaling necessary for diffusion! )

# The Model

## $f_{\varepsilon}^{S}(x, v)$ stationary solution of the microscopic dynamics

### Observables

Stationary mass flux: 
$$J^{\mathcal{S}}_{\varepsilon}(x) = \eta_{\varepsilon} \int_{\mathcal{S}_1} v f^{\mathcal{S}}_{\varepsilon}(x, v) dv$$

Stationary mass density:

$$\varrho_{\varepsilon}^{S}(x) = \int_{S_{1}} f_{\varepsilon}^{S}(x, v) \, dv$$

- $J_{\varepsilon}^{S}$ : total amount of mass through a unit area in a unit time.
- $\eta_{arepsilon}$   $\rightsquigarrow$  (time scaling necessary for diffusion! )

## Main results

## Theorem 1 [Basile, N., Pezzotti, Pulvirenti]

For  $\varepsilon$  sufficiently small there exists a unique  $L^\infty$  stationary solution  $f_\varepsilon^S$  for the microscopic dynamics. Moreover

$$f_{\varepsilon}^{S} 
ightarrow \varrho^{S}$$
 as  $\varepsilon 
ightarrow 0$ 

where  $\rho^{S}$  is the stationary solution of the heat equation

$$\varrho^{\mathsf{S}}(x) = \frac{\rho_1(L-x_1) + \rho_2 x_1}{L}$$

The convergence is in  $L^2((0, L) \times S_1)$ .

Boundary conditions depend on the space variable only through x<sub>1</sub>
 ⇒ f<sup>S</sup><sub>ε</sub>, ρ<sup>S</sup> inherits the same feature
 ⇒ convergence in L<sup>2</sup>((0, L) × S<sub>1</sub>) instead of L<sup>2</sup>(Λ × S<sub>1</sub>).

▶ For the convergence of the stationary solutions it is enough  $\varepsilon^{\frac{1}{2}}\eta^{5}_{\varepsilon} \rightarrow 0$ .

## Main results

## Theorem 1 [Basile, N., Pezzotti, Pulvirenti]

For  $\varepsilon$  sufficiently small there exists a unique  $L^\infty$  stationary solution  $f_\varepsilon^S$  for the microscopic dynamics. Moreover

$$f_{\varepsilon}^{S} 
ightarrow \varrho^{S}$$
 as  $\varepsilon 
ightarrow 0$ 

where  $\varrho^{S}$  is the stationary solution of the heat equation

$$\varrho^{\mathsf{S}}(x) = \frac{\rho_1(L-x_1) + \rho_2 x_1}{L}$$

The convergence is in  $L^2((0, L) \times S_1)$ .

Boundary conditions depend on the space variable only through x<sub>1</sub>
 ⇒ f<sup>S</sup><sub>ε</sub>, ρ<sup>S</sup> inherits the same feature
 ⇒ convergence in L<sup>2</sup>((0, L) × S<sub>1</sub>) instead of L<sup>2</sup>(Λ × S<sub>1</sub>).

▶ For the convergence of the stationary solutions it is enough  $\varepsilon^{\frac{1}{2}}\eta^{5}_{\varepsilon} \rightarrow 0$ .

Alessia Nota (Sapienza)

## Theorem 2 [Fick's law] [Basile, N., Pezzotti, Pulvirenti]

• 
$$J_{\varepsilon}^{S} + D\nabla_{x}\varrho_{\varepsilon}^{S} \to 0$$
 as  $\varepsilon \to 0$  in  $\mathcal{D}'(0, L)$   
where  $D = \frac{1}{4\pi} \int_{S_{1}} dv \, v \cdot (-\mathcal{L})^{-1} v$  (Green-Kubo).  
•  $J^{S} = \lim_{\varepsilon \to 0} J_{\varepsilon}^{S}(x)$  in  $L^{2}(0, L)$   
and  $J^{S} = -D \nabla \varrho^{S} = -D \frac{\rho_{2} - \rho_{1}}{L}$  ( $\varrho^{S}$  linear profile).

- ▶  $J^S$  does not depend on the space variable.
- Diff. coeff. D determined by the behavior of the system at equilibrium. (Same D of the time dependent problem!)

## Theorem 2 [Fick's law] [Basile, N., Pezzotti, Pulvirenti]

• 
$$J_{\varepsilon}^{S} + D\nabla_{x}\varrho_{\varepsilon}^{S} \to 0$$
 as  $\varepsilon \to 0$  in  $\mathcal{D}'(0, L)$   
where  $D = \frac{1}{4\pi} \int_{S_{1}} dv \, v \cdot (-\mathcal{L})^{-1} v$  (Green-Kubo).  
•  $J^{S} = \lim_{\varepsilon \to 0} J_{\varepsilon}^{S}(x)$  in  $L^{2}(0, L)$   
and  $J^{S} = -D \nabla \varrho^{S} = -D \frac{\rho_{2} - \rho_{1}}{L}$  ( $\varrho^{S}$  linear profile).

- $J^S$  does not depend on the space variable.
- Diff. coeff. D determined by the behavior of the system at equilibrium.
   (Same D of the time dependent problem!)

## The Boltzmann equation as a bridge

Introduce the stationary linear Boltzmann equation

$$\begin{cases} (\mathbf{v} \cdot \nabla_{\mathbf{x}}) h_{\varepsilon}^{\mathsf{S}}(\mathbf{x}, \mathbf{v}) = \eta_{\varepsilon} \mathcal{L} h_{\varepsilon}^{\mathsf{S}}(\mathbf{x}, \mathbf{v}), \\ h_{\varepsilon}^{\mathsf{S}}(\mathbf{x}, \mathbf{v}) = \rho_{1}, \quad \mathbf{x} \in \{0\} \times \mathbb{R}, \quad \mathbf{v}_{1} > 0, \\ h_{\varepsilon}^{\mathsf{S}}(\mathbf{x}, \mathbf{v}) = \rho_{2}, \quad \mathbf{x} \in \{L\} \times \mathbb{R}, \quad \mathbf{v}_{1} < 0, \end{cases}$$

$$\mathcal{L}f(\mathbf{v}) = \mu \int_{-1}^{1} d\rho [f(\mathbf{v}') - f(\mathbf{v})]$$
$$f \in L^{1}(S_{1})$$
$$\mathbf{v}' = \mathbf{v} - 2(n \cdot \mathbf{v})n, \quad n = n(\rho)$$



 $\{v(t)\}_{t\geq 0}$  Markov jump process  $x(t) = \int_0^t v(s) ds$ 

## Strategy

There exists a unique stationary solution h<sup>S</sup><sub>ε</sub> ∈ L<sup>∞</sup>((0, L) × S<sub>1</sub>) of the linear Boltzmann equation. As ε → 0

$$h^{S}_{arepsilon} o arepsilon^{S}$$
 in  $L^{2}((0,L) imes S_{1})$  (Markov part)

② There exists a unique stationary solution f<sup>S</sup><sub>ε</sub> ∈ L<sup>∞</sup>((0, L) × S<sub>1</sub>) for the microscopic dynamics such that

 $\|h_{\varepsilon}^{S} - f_{\varepsilon}^{S}\|_{\infty} \leq C \varepsilon^{\frac{1}{2}} \eta_{\varepsilon}^{5}$  (Markovian approximation)

(The memory effects preventing the Markovianity are negligible!)

## Strategy

There exists a unique stationary solution h<sup>S</sup><sub>ε</sub> ∈ L<sup>∞</sup>((0, L) × S<sub>1</sub>) of the linear Boltzmann equation. As ε → 0

$$h^{\mathsf{S}}_{arepsilon} o arrho^{\mathsf{S}}$$
 in  $L^2((0,L) imes S_1)$  (Markov part)

One and the exists a unique stationary solution  $f_{\varepsilon}^{S} \in L^{\infty}((0, L) \times S_{1})$  for the microscopic dynamics such that

 $\|h_{\varepsilon}^{S} - f_{\varepsilon}^{S}\|_{\infty} \leq C \varepsilon^{\frac{1}{2}} \eta_{\varepsilon}^{5}$  (Markovian approximation)

(The memory effects preventing the Markovianity are negligible!)

Stationary solutions as the long time asymptotics of  $h_{\varepsilon}(t)$  and  $f_{\varepsilon}(t)$ ? **Pb:** control the convergence rates, as  $t \to \infty$ , with respect to  $\varepsilon$ **Trick:** characterize instead  $h_{\varepsilon}^{S}$  and  $f_{\varepsilon}^{S}$  in terms of the Neumann series!

## Strategy

There exists a unique stationary solution h<sup>S</sup><sub>ε</sub> ∈ L<sup>∞</sup>((0, L) × S<sub>1</sub>) of the linear Boltzmann equation. As ε → 0

$$h^{\mathsf{S}}_{arepsilon} o arrho^{\mathsf{S}}$$
 in  $L^2((0,L) imes S_1)$  (Markov part)

One and the exists a unique stationary solution  $f_{\varepsilon}^{S} \in L^{\infty}((0, L) \times S_{1})$  for the microscopic dynamics such that

 $\|h_{\varepsilon}^{S} - f_{\varepsilon}^{S}\|_{\infty} \leq C \varepsilon^{\frac{1}{2}} \eta_{\varepsilon}^{5}$  (Markovian approximation)

(The memory effects preventing the Markovianity are negligible!)

Stationary solutions as the long time asymptotics of  $h_{\varepsilon}(t)$  and  $f_{\varepsilon}(t)$ ? **Pb:** control the convergence rates, as  $t \to \infty$ , with respect to  $\varepsilon$ **Trick:** characterize instead  $h_{\varepsilon}^{S}$  and  $f_{\varepsilon}^{S}$  in terms of the Neumann series!

## Markov part

 $\Rightarrow$ 

 $h_{\varepsilon}$  solution of the linear Boltzmann equation with boundary conditions  $\rho_1$ ,  $\rho_2$  and initial data  $f_0$ .

$$h_{\varepsilon}(x,v,t) = h_{\varepsilon}^{out}(x,v,t) + h_{\varepsilon}^{in}(x,v,t) = h_{\varepsilon}^{out}(x,v,t) + S_{\varepsilon}^{0}(t)f_{0}$$

$$\underset{Markov sgr.}{\overset{Markov sgr.}{\longrightarrow}}$$

 $h_{\varepsilon}^{out}$ : backward trajectories hitting the boundary.

 $h_{\varepsilon}^{in}$ : trajectories which never leave  $\Lambda$ .

$$h_{\varepsilon}^{S} = h_{\varepsilon}^{out}(t_{0}) + S_{\varepsilon}^{0}(t_{0})h_{\varepsilon}^{S}, \qquad t_{0} > 0$$

$$h_{\varepsilon}^{S} = \sum_{n \ge 0} (S_{\varepsilon}^{0}(t_{0}))^{n} h_{\varepsilon}^{out}(t_{0}) \quad (Neumann \ series)$$

Convergence of the Neumann series  $\Rightarrow$  existence and uniqueness of  $h_{\varepsilon}^{S}$  $h_{\varepsilon}^{S} \rightarrow \varrho^{S}$  Hilbert expansion technique

# Pathological configuration in the Markovian approximation



#### **Backward Interference**

**Backward Recollision** 

## Proof of Theorem 2

By standard computations (Hilbert expansion technique)

$$h_arepsilon^{\mathcal{S}} = arrho^{\mathcal{S}} + rac{1}{\eta_arepsilon} h^{(1)} + rac{1}{\eta_arepsilon} extbf{R}_{\eta_arepsilon}$$

But

$$h^{(1)}(v) = \mathcal{L}^{-1}(v \cdot \nabla_{x} \varrho^{S}) = \frac{\rho_{2} - \rho_{1}}{L} \mathcal{L}^{-1}(v_{1})$$

$$R_{\eta_{\varepsilon}} = O(\frac{1}{\sqrt{\eta_{\varepsilon}}}), \qquad \int_{S_{1}} v \varrho^{S} dv = 0$$

$$\downarrow$$

$$\eta_{\varepsilon} \int_{S_{1}} v h_{\varepsilon}^{S}(x, v) dv = -D \nabla_{x} \varrho^{S} + O(\frac{1}{\sqrt{\eta_{\varepsilon}}})$$

$$\sim J_{\varepsilon}^{S}(x) \text{ in } L^{\infty} \qquad \sim D \nabla_{x} \varrho_{\varepsilon}^{S} \text{ in } \mathcal{D}'$$
(Theorem 1)

# Thanks for your attention!