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{

dX (t) = b(t,X (t))dt + σ(t,X (t))dB(t), 0 ≤ s < t ≤ T

X (s) = x ,
{

∂
∂t u(t, x) +

1
2Tr [σ(t, x)σ

∗(t, x)D2
xu(t, x)] + 〈b(t, x),Dxu(t, x)〉 = 0

u(T , x) = φ(x)

u(s, x) = E[φ(X (T , s, x))]
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∂t
u(t) = (−1)N+1∆Nu(t) (1)

∂

∂t
u(t) = (−1)N+1∆Nu(t)− V (x)u(t, x) (2)

u(t, x) = ”Ex [u(0,X (t))e−
∫ t

0 V (X (s))ds ]”

Problem: the solutions of (1) do not satisfy a maximum principle.
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G (t, x − y) =
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(x−y)2

2t

√
2πt

e(
∆
2
−V )tu0(x) = E[u0(x +W (t))e−

∫ t

0 V (x+W (s))ds ]
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...
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ak

k−1
∏

j=0

G (tj+1 − tj , xj+1 − xj)dx1...dxk ,

”higher order heat equation” case u̇(t) = (−1)N+1∆nu(t)

G (t, x − y) =
1

2π

∫

e i(x−y)ξe−ξ2ntdξ

in not positive!
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[0,t] whose
cylindrical approximations are given by
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...
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ak

k−1
∏

j=0

G (tj+1−tj , xj+1−xj)dx1...dxk ,

◮ E.Thomas, PTRF (2001): proof of the analogue of
Prokhorov’s criterion on the existence of the projective limit of
a compatible system of signed or complex measures.
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An alternative integration theory

◮ Realization of the ”integral”

f ∈ C0(X ) 7→
∫

X

f (x)dµ(x) := Iµ(f ),

as a linear continuous functional on a ”suitable” Banach
algebra B of ”integrable functions”

◮ Consequence: in the application to the generalized
Feynman-Kac formulae for the high order heat type equations

u(t, x) = E[u0(x + ω(t)e−
∫
V (x+ω(s))ds ]

we expect some restrictions on the class of initial data u0 and
potentials V
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Possible approaches and results

◮ V. Yu. Krylov (1960), K. Hochberg (1978): solution of
∂
∂t u(t) = (−1)N+1∆Nu(t)− V (x)u(t, x) in terms of on

integral on R
[0,t] w.r.t a signed measure with ∞ total variation

◮ D. Levin, T. Lyons (2009): raugh path approach.

◮ T. Funaki (1979): representation of the solution
of ∂∂t u(t) =

1
8∆

2u(t) in terms of the expectation w.r.t. a
complex valued stocastic process (with dependent increments)

◮ R. Léandre (2010): Hida-Connes calculus approach
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S. Bonaccorsi and S. Mazzucchi, High Order Heat-type Equations

and Random Walks on the Complex Plane.

arXiv:1402.6140 [math.PR] (2014).
The 1- dimensional Brownian motion can be realized as a weak
scaling limit of a random walk on the real line:

B(t) = lim
n→∞

1

n1/2

⌊nt⌋
∑

j=1

ξj = lim
n→∞

Sn(t)

ξj i.i.d. random variables such that

P(ξj = 1) = P(ξj = −1) =
1

2

the Feynman-Kac formula can be written as:

u(t, x) = lim
n→∞

E[e−i
∫ t

0 V (Sn(s)+x)dsu0(Sn(t) + x)]
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A new probabilistic construction

Let α be a complex number and N ∈ N a given integer.

∂

∂t
u(t, x) =

α

N!

∂N

∂xN
u(t, x), x ∈ R

Let (Ω,F ,P) be a probability space, let
R(N) = {e2iπk/N , k = 0, 1, . . . ,N − 1} be the roots of the unity.
Then we consider the random variable ξ that has uniform
distribution on the set α1/NR(N):

E[f (ξ)] =
1

N

N−1
∑

k=0

f (α1/Ne2iπk/N). (3)



��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

N=3 α=1

�
�
�
�

�
�
�
�

�
�
�

�
�
�

N=3 α= i



�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

α= 1N=4

����

�
�
�
�

�
�
�

�
�
�

N=4 α=−1



Some interestin properties

The random variable ξ has finite moments of every order

E[ξm] =

{

αm/N , m = nN, n ∈ N,

0, otherwise

Examples:

◮ N = 2: E[ξm] = 0 if m odd, E[ξm] = αm/2 if m even



Some interestin properties

The random variable ξ has finite moments of every order

E[ξm] =

{

αm/N , m = nN, n ∈ N,

0, otherwise

Examples:

◮ N = 2: E[ξm] = 0 if m odd, E[ξm] = αm/2 if m even

◮ N = 6: E[ξm] = 0 for m = 1, 2, 3, 4, 5, E[ξ6] = α
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A non standard central limit theorem

Let {ξj , j ∈ N} be a sequence of i.i.d. random variables having
uniform distribution on the set α1/NR(N)
Let S̃n be the normalized random walk defined by the {ξj}, i.e.,

S̃n =
1

n1/N

n
∑

j=1

ξj

Then its distribution converges weakly to a stable distribution of
order N in the sense that

lim
n→∞

E[exp(iλS̃n)] = exp

(

iNα

N!
λN

)

.
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is weaker than that of the classical CLT and is related to the
order of spatial derivative in the PDE.
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Remarks

◮ We explicitly note that, for N > 2, the scaling exponent 1/N
is weaker than that of the classical CLT and is related to the
order of spatial derivative in the PDE.

◮ We also note that, for N > 2, the function exp(cxN) is not a
well defined characteristic function.

◮ In case N = 2, the limit of the random walk S̃n is a Wiener
process; to be precise, since in the definition of S̃n no time is
involved, it converges to the Wiener process at time t = 1. It
is possible to extend this result to general times; however, it is
not possible to talk about the limit process in case N > 2. We
aim to construct a family of random walks Wn(t) that
generalizes, in a suitable sense, S̃n to a continuous time
process
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A family of complex jump processes

Let {ξj} be a sequence of independent copies of the random
variable ξ defined in (3). Then for any n ∈ N we set

Wn(t) =
1

n1/N

⌊nt⌋
∑

j=1

ξj

The sequence of processes {Wn} should converge in a very weak
sense to a N-stable process (which, we note again, does not exist
for N > 2.

Theorem
For any t ∈ (−∞,+∞) and λ ∈ C,

lim
n→∞

E[exp(iλWn(t))] = exp

(

iN
λN

N!
αt

)

.



Solution of higher order PDEs

∂

∂t
u(t, x) =

α

N!

∂N

∂xN
u(t, x),

u(t0, x) = f (x), x ∈ R.

(4)

We are going to show that for a suitable class of initial datum f ,
the limit

u(t, x) = lim
n→∞

E[f (x +Wn(t − t0))] (5)

is well defined for any x ∈ R and t in a suitable neighbor of t0, and
it provides a representation for the solution of (4).
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Solution of higher order PDEs

Let f : R → C be a (complex-valued) function of the form

f (x) =

∫

R

e ixy dµ(y),

where µ is a measure of bounded variation on R satisfying
following assumptions:

1.

∫

R

|e ixz | d|µ|(x) < ∞ for all z ∈ C,

2. there exists a time interval (T1,T2), with T1 < t0 < T2 ∈ R,
such that

∫

R

∣

∣

∣

∣

exp

(

iNα
xN

N!
(t − t0))

)∣

∣

∣

∣

d|µ|(x) < ∞

for all t ∈ (T1,T2)



Solution of higher order PDEs
Then the function

u(t, x) = lim
n→∞

E[f (x +Wn(t − t0))]

is a representation of the solution of the parabolic problem (4) for
any time t ∈ (T1,T2) in the sense that

u(t, x) =

∫

R

e i x y exp

(

iNα

N!
(t − t0)y

N

)

dµ(y) (6)

and the integral in (6) is absolutely convergent. Suppose further
that

3.

∫

R

∣

∣

∣

∣

xN exp

(

iNα
xN

N!
(t − t0)

)∣

∣

∣

∣

d|µ|(x) < ∞ for all

t ∈ (T1,T2).

Then the function

u(t, x) = lim
n→∞

E[f (x +Wn(t − t0))]

is a is a classical solution for the problem (4) for any time
t ∈ (T1,T2)



The boundary value problem

The technique can be applied to the study of the boundary value
problem

lim
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◮ on R
+, with Dirichelet or Neumann boundary conditions, if N

is even



The boundary value problem

The technique can be applied to the study of the boundary value
problem

lim
n→∞

E[f (x +Wn(t − t0))]

∂

∂t
u(t, x) =

α

N!

∂N

∂xN
u(t, x)

◮ on R
+, with Dirichelet or Neumann boundary conditions, if N

is even

◮ on [0, L] with periodic boundary conditions, for any N ∈ N



Further developments

Study of the ”speed of convergence” and implementation of a
Montecarlo type technique for the numerical computation of the
solution.

un(t, x) := E[f (x +Wn(t − t0))]

|u(t, x)− un(t, x)| ≤ (1 + ǫ)
C (t)

n
∀x ∈ R, t ∈ (T1,T2)

where

C (t) =
|α|
N!

∫

|x |N
∣

∣

∣

∣

exp

(

iNα
xN

N!
(t − t0)

)
∣

∣

∣

∣

d|µ|(x)+

+|α|2(t−t0)

(

1

2(N!)2
− 1

(2N)!

)
∫

|x |2N
∣

∣

∣

∣

exp

(

iNα
xN

N!
(t − t0)

)∣

∣

∣

∣

d|µ|(x)



Further developments

Introduction of a potential V and construction of a generalized
Feynman-Kac formula.

{

∂tu(t, x) =
α
N! ∂

N
x u(t, x) + V (x)u(t, x)

u(0, x) = u0(x), x ∈ R,
(7)

u(t, x) = lim
n→∞

E[u0(x +W n(t))e
∫ t

0 V (x+W n(s))ds ]



Further developments

Implementation of a generalized stochastic calculus (Ito integral,
Ito formula) for the process Wn(t):

f (W n
t )− f (W n

0 ) ∼
∫ t

0
f ′(W n

s )dW
n
s +

1

2!

∫ t

0
f ′′(W n

s )(dW
n
s )

2+

· · ·+ 1

N!

∫ t

0
f (N)(W n

s )(dW
n
s )

N n → ∞
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