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Generalizations of Feynman-Kac formula

1
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Generalizations of Feynman-Kac formula

P 1
geu(t:x) = 58u(t,x) = V(x)u(t,x)

u(t,x) = / e Jo V(@) +x)ds o (w(t)+x)dW(w), for a.e. x € RY
G
dX(t) = b(t, X(t))dt + o(t, X(t))dB(t), 0<s<t<T
{ X(s) = x,

{ %u(t,x) + 3 Tr[o(t,x)o*(t, x)D2u(t, x)] + (b(t, x), Dxu(t,x)) =0
u(T,x) = ¢(x)
U(S,X) = E[(b(X(Tv va))]



Generalizations of Feynman-Kac formula

A — AN Heat equation — " higher order heat equation”

9 u(t) = (-1 TaNu(r) (1)

& u(t) = ()M AN () - Vu(tx) )
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Generalizations of Feynman-Kac formula

A — AN Heat equation — " higher order heat equation”

gtu(t) = (—1)MHLANy(r)

gtu(t) = (=)™ A u(t) = V(x)u(t,x)

u(t, x) = "EX[u(0, X(£))e™ o VOX(DNes):

Problem: the solutions of (1) do not satisfy a maximum principle.
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Formal derivation of Feynman-Kac formula: Trotter
product formula

e(g_v)tUO(X):n“_,m/ o (x-+x0)e” >t VD1 Gt/ x5—xj-1)dbg

e(%—V)t ( ) E[UO(X+ W(t)) f V(x+W(s) dS]



Signed measures on R[]
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Signed measures on R[]

Let’s try to define a signed measure p on Q = RI%t] defined on
"cylindrical sets” Iy C Q = {x:[0,00) = R},
I = {wGQ:w(tj) S [aj,bj],j: 1,.../(}, O<ty <t <...tg,

by by k 1
Hty o, ot Ik / / tj-‘rl - tj>Xj+1 - Xj)dX]_...ka,
ak

" higher order heat equation” case i(t) = (—1)NTLA"u(t)

1 __¢2n
G(t,x —y) = 27T/ i=y)E =t g

in not positive!



Non existence of the limiting measure u

» V. Yu. Krylov (1960): It does not exist a o-additive resp.
signed bounded variation measure i on RI[%t whose
cylindrical approximations are given by

by k=1
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Non existence of the limiting measure u

» V. Yu. Krylov (1960): It does not exist a o-additive resp.
signed bounded variation measure i on RI[%t whose
cylindrical approximations are given by

by k=1

by
Mtl,tz,...,tk(/k)Z/ / T G(ti1—ti, 01— x)dxa....dx,
a a

Kk j=0

» E.Thomas, PTRF (2001): proof of the analogue of
Prokhorov's criterion on the existence of the projective limit of
a compatible system of signed or complex measures.
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fe Go(X) /Xf(x)du(x) — 1.(F),
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algebra B of "integrable functions”



An alternative integration theory

> Realization of the "integral”

fe Go(X) /Xf(x)du(x) — 1.(F),

as a linear continuous functional on a "suitable” Banach
algebra B of "integrable functions”

» Consequence: in the application to the generalized
Feynman-Kac formulae for the high order heat type equations

u(t, x) = E[ug(x + w(t)e™/ Vixtel(s)ds)

we expect some restrictions on the class of initial data ug and
potentials V
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Possible approaches and results

v

V. Yu. Krylov (1960), K. Hochberg (1978): solution of

S u(t) = (—1)"*TANu(t) — V(x)u(t,x) in terms of on
integral on RI%I w.r.t a signed measure with oo total variation
» D. Levin, T. Lyons (2009): raugh path approach.

» T. Funaki (1979): representation of the solution

of%u(t) = §A2u(t) in terms of the expectation w.r.t. a

complex valued stocastic process (with dependent increments)

v

R. Léandre (2010): Hida-Connes calculus approach
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A new probabilistic construction

S. Bonaccorsi and S. Mazzucchi, High Order Heat-type Equations
and Random Walks on the Complex Plane.

arXiv:1402.6140 [math.PR] (2014).

The 1- dimensional Brownian motion can be realized as a weak
scaling limit of a random walk on the real line:

[nt]

& i.i.d. random variables such that

P =1)=PE=-1)=3
the Feynman-Kac formula can be written as:

u(t,x) = lim E[e~Jo V(Sa(+)ds (S () 4 x)]

n—oo



A new probabilistic construction

Let o be a complex number and N € N a given integer.

0 a oV
au(t,x) = maX—Nu(t,x), x€eR



A new probabilistic construction

Let o be a complex number and N € N a given integer.

u(t,x) = ———u(t,x), xeR

at

Let (Q, F,P) be a probability space, let

R(N) = {*™/N 'k =0,1,...,N — 1} be the roots of the unity.
Then we consider the random variable £ that has uniform
distribution on the set a'/NR(N):

=2
-

E[F(©)] = 5 3 FlaX/Medm/N) 3)
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Some interestin properties

The random variable £ has finite moments of every order

E[em] = a™N m=nN, neN,
B 0, otherwise

Examples:
» N=2: E[¢™] = 0if modd, E[¢"] = a™? if m even



Some interestin properties

The random variable £ has finite moments of every order

E[em] = a™N m=nN, neN,
B 0, otherwise

Examples:
» N=2: E[¢™] = 0if modd, E[¢"] = a™? if m even
» N=6: E[¢™] =0 form=1,2,3,4,5 E[°] =«



A non standard central limit theorem
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uniform distribution on the set a/VR(N)
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A non standard central limit theorem

Let {{, j € N} be a sequence of i.i.d. random variables having
uniform distribution on the set aNR(N)
Let S, be the normalized random walk defined by the {¢;}, i.e.,

- 1 <&
Sn = /N Zgj
j=1

Then its distribution converges weakly to a stable distribution of
order N in the sense that

. L\ & Ny N
nILrgoE[exp(/ASn)] = exp (I\I!)\ ) .



Remarks

» We explicitly note that, for N > 2, the scaling exponent 1/N
is weaker than that of the classical CLT and is related to the
order of spatial derivative in the PDE.
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Remarks

» We explicitly note that, for N > 2, the scaling exponent 1/N
is weaker than that of the classical CLT and is related to the
order of spatial derivative in the PDE.

» We also note that, for N > 2, the function exp(cx) is not a
well defined characteristic function.

» In case N = 2, the limit of the random walk §,, is a Wiener
process; to be precise, since in the definition of 3,, no time is
involved, it converges to the Wiener process at time t = 1. It
is possible to extend this result to general times; however, it is
not possible to talk about the limit process in case N > 2. We
aim to construct a family of random walks W, (t) that
generalizes, in a suitable sense, :9,, to a continuous time
process



A family of complex jump processes

Let {{;} be a sequence of independent copies of the random
variable £ defined in (3). Then for any n € N we set
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A family of complex jump processes

Let {{;} be a sequence of independent copies of the random
variable £ defined in (3). Then for any n € N we set
1 Lnt]
Wn(t) = /N 5.1'
j=1

The sequence of processes { W,,} should converge in a very weak
sense to a N-stable process (which, we note again, does not exist
for N > 2.



A family of complex jump processes

Let {{;} be a sequence of independent copies of the random
variable £ defined in (3). Then for any n € N we set

| nt]

Wi(t) = ,,1/N fo

The sequence of processes { W,,} should converge in a very weak
sense to a N-stable process (which, we note again, does not exist
for N > 2.

Theorem
For any t € (—o0,+00) and X € C,

N
I|m E[exp(:)\W ()] =exp </ )I;“at>



Solution of higher order PDEs

a N
8tu(t7x) = mwu(tax)a (4)
u(to, x) = f(x), x € R.

We are going to show that for a suitable class of initial datum f,
the limit

u(t,x) = lim E[f(x + Wy(t — t))] (5)

n—oo

is well defined for any x € R and t in a suitable neighbor of tg, and
it provides a representation for the solution of (4).



Solution of higher order PDEs

Let f : R — C be a (complex-valued) function of the form

f(x) = /R e™ du(y),

where 1 is a measure of bounded variation on R satisfying
following assumptions:

1. / |e”%| d|p|(x) < oo for all z € C,
R



Solution of higher order PDEs

Let f : R — C be a (complex-valued) function of the form

f(x) = /R e™ du(y),

where 1 is a measure of bounded variation on R satisfying
following assumptions:

1. / |e”%| d|p|(x) < oo for all z € C,
R

2. there exists a time interval (Ty, T), with T1 < tp < T» € R,

such that
|

for all t € (Tl, Tg)

N

oxp (a3 (e~ )| () <




Solution of higher order PDEs

Then the function
u(t,x) = nlu_)n;oE[f(x + W, (t — to))]

is a representation of the solution of the parabolic problem (4) for
any time t € (Ty, T3) in the sense that

er) = [@ven(Tle-wy) auy  ©

and the integral in (6) is absolutely convergent. Suppose further
that

s [

t e (Tl, TQ).
Then the function

u(t,x) = nIi_)n;OE[f(x + W, (t — t))]

N
x" exp (iNa)/(Vl(t — to)>‘ d|p|(x) < oo for all

is a is a classical solution for the problem (4) for any time
t e (Tl, T2)



The boundary value problem

The technique can be applied to the study of the boundary value
problem
ILm E[f(x + Wi(t — to))]

» on R, with Dirichelet or Neumann boundary conditions, if N
is even



The boundary value problem

The technique can be applied to the study of the boundary value
problem
ILm E[f(x + Wi(t — to))]

» on R, with Dirichelet or Neumann boundary conditions, if N
is even

» on [0, L] with periodic boundary conditions, for any N € N



Further developments

Study of the "speed of convergence” and implementation of a
Montecarlo type technique for the numerical computation of the

solution.
un(t, x) := E[f(x + W,(t — t0))]
C(1)
lu(t, x) — un(t, x)| §(1+6)T VxeR, te(Ty, Ta)
where

C(t) = |a| /|X|N

et (g ~ ) |

oxp (i . )| i)+

oxp (a6~ ) )| el




Further developments

Introduction of a potential V' and construction of a generalized
Feynman-Kac formula.

{ Deu(t, x) = g O u(t, ) + V(x)u(t, x) (7)
u(0, x) = up(x), x € R,

u(t,x) = lim Eluo(x + W(t))elo VoW (s)ds)



Further developments

Implementation of a generalized stochastic calculus (Ito integral,
Ito formula) for the process W,(t):

t t
FWE) = FW) ~ [ Fwnawg + o [ wnawsy+
0 - JO

t
SRS FMW( WV n— oo
N Jo
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