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Hidden Markov Model Model

Hidden Markov Model in Continuous Time

Observation process Y = (Yt)t∈[0,T ] on (Ω,A,P) with

Yt =

∫ t

0
µsds + Wt .

Yt models a return process.

Drift µt is governed by signal Xt , a Markov jump process with state
space {e1, . . . , ed}, so µt = 〈µ,Xt〉, and rate matrix Q.

The volatility is constant.

W Brownian motion, independent of signal X .

We are interested in the filter E [Xt | Yt ], where Yt = σ(Ys |s ≤ t) is
the observable information.
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Hidden Markov Model Model
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Hidden Markov Model Change of Measure and Filtering Equations

Change of Measure

We introduce a change of measure using the density

dP̃
dP

∣∣∣∣∣
Ft

= Zt = exp

(∫ t

0
〈µ,Xs〉dWs −

1

2

∫ t

0
〈µ,Xs〉2ds

)
.

Define the unnormalized filter as

ρt(X ) := Ẽ
[
Z−1
t Xt |Yt

]
∝ E [Xt | Yt ].
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Hidden Markov Model Change of Measure and Filtering Equations

Filtering Equations

For the unnormalized filter we have that

dρt(X ) = QTρt(X )dt + Bρt(X )dYt ,

where B = Diag(µ).

In general, filtering equations are not finite dimensional.
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Hidden Markov Model Properties of the Model

Portfolio Optimization

Portfolio optimization is possible in the HMM (Haussmann/Sass,
2004).

Goal is to maximize E[U(V π
T )] for wealth process V π and utility U.

For U = log this leads to the optimal risky fraction

πt =
〈µ,E[Xt |Yt ]〉

σ2
.

The optimal strategy depends on the filter.
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Hidden Markov Model Properties of the Model

Properties of the HMM

Filter equations are finite dimensional, so the filters can be computed
from finitely many SDEs.

Parameters can be estimated using the EM-algorithm (Elliott, 1992).

Robustifications are available which eliminate the stochastic integral
from the filtering equation (James/Krishnamurthy/Le Gland, 1992).

Filters can be derived for any σ > 0.

But: σ has to be constant.

So ’Stylized Facts’ as e.g jumps in the volatility or volatility clustering
cannot be modeled using a HMM!
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Markov Switching Model Model

Markov Switching Model

Drift and volatility are governed by Markov chain X .

Observations Y = (Yt)t∈[0,T ] are given by

Yt =

∫ t

0
〈µ,Xs〉ds +

∫ t

0
〈σ,Xs〉dWs .
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Markov Switching Model Model

Properties of the MSM

Many ’Stylized Facts’ can be modeled.

But: In theory Xt can be observed via [Y ]t .

There is no filtering problem in the continuous time MSM!

The optimal risky fraction for log utility is (Bäuerle/Rieder, 2004)

πt =
〈µ,Xt〉
〈σ,Xt〉2

.

For finer discretizations, the MSE in the MSM behaves differently
than in the HMM.
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Markov Switching Model Comparison to HMM

Idea: Different dynamics for σ.

Model volatility as depending on an observable process.
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Markov Switching Model Observable Volatility

Filter Based Volatility Model

Observations Y are

Yt =

∫ t

0
〈µ,Xs〉ds +

∫ t

0
σsdWs .

Change of measure with density

dZt = −Ztσ
−1
t 〈µ,Xt〉dWt

leads to

Yt =

∫ t

0
σsdW̃s

where dW̃t = dWt + σ−1
t 〈µ,Xt〉dt P̃-Brownian motion.
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Markov Switching Model Observable Volatility

Filter Based Volatility

Consider a model for σt = σ(ξt) with

dξt = ν(ξt)dt + τ(ξt)dW̃t .

The equation for the unnormalized filter is

dρt(X ) = QTρt(X )dt +
1

σ2
t

Bρt(X )dYt .

Since dYt = σtdW̃t , we can choose

ξt = ρt(X ).
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Markov Switching Model Filter Based Volatility

Approximating the MSM

Assume returns in both models are depending on the same Markov
chain X and Brownian motion W .

Difference of the returns is

YMSM
t − Y FV

t =

∫ t

0
(〈σ,Xt〉 − σ(ξt))dWs .

Want to minimize the (squared) distance over all YFV -adapted
processes ξ̃:

E[(YMSM
t − Y FV

t )2]
!

= min
ξ̃

E

[(∫ t

0
〈σ,Xt〉 − σ(ξ̃t)dWs

)2
]
.
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Markov Switching Model Filter Based Volatility

Approximating the MSM

This results in

σ(ξt) = E[〈σ,Xt〉|YFV
t ]

= 〈σ,E[Xt |YFV
t ]〉.

So: The general ansatz of observable volatility approximating the
MSM leads to a function of the filter!

This function corresponds exactly to the function of X in the MSM.

In particular, it is linear in the filter.
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Markov Switching Model Filter Based Volatility

Linear Model
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Markov Switching Model Filter Based Volatility

Properties of the Model

Model captures the same ’Stylized Facts’ as the MSM in general.

But some are less pronounced, e.g. Heavy Tails.

Portfolio optimization can be done for several utility functions
(Sass/Haussmann,2004).

Robust discretizations are available.
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The filter based volatility model

...has non-constant volatility.

...has a finite dimensional filtering equation.

...approximates the MSM.

...allows for portfolio optimization and parameter estimation with the
EM-algorithm.

But: Some ’Stylized Facts’ are less pronounced.

Elisabeth Leoff (TU Kaiserslautern) Filter Based Volatility in the HMM May 26 2014 18 / 19



Conclusion

Summary

The filter based volatility model

...has non-constant volatility.

...has a finite dimensional filtering equation.

...approximates the MSM.

...allows for portfolio optimization and parameter estimation with the
EM-algorithm.

But: Some ’Stylized Facts’ are less pronounced.

Elisabeth Leoff (TU Kaiserslautern) Filter Based Volatility in the HMM May 26 2014 18 / 19



Conclusion

Summary

The filter based volatility model

...has non-constant volatility.

...has a finite dimensional filtering equation.

...approximates the MSM.

...allows for portfolio optimization and parameter estimation with the
EM-algorithm.

But: Some ’Stylized Facts’ are less pronounced.

Elisabeth Leoff (TU Kaiserslautern) Filter Based Volatility in the HMM May 26 2014 18 / 19



Conclusion

Summary

The filter based volatility model

...has non-constant volatility.

...has a finite dimensional filtering equation.

...approximates the MSM.

...allows for portfolio optimization and parameter estimation with the
EM-algorithm.

But: Some ’Stylized Facts’ are less pronounced.

Elisabeth Leoff (TU Kaiserslautern) Filter Based Volatility in the HMM May 26 2014 18 / 19



Conclusion

Summary

The filter based volatility model

...has non-constant volatility.

...has a finite dimensional filtering equation.

...approximates the MSM.

...allows for portfolio optimization and parameter estimation with the
EM-algorithm.

But: Some ’Stylized Facts’ are less pronounced.

Elisabeth Leoff (TU Kaiserslautern) Filter Based Volatility in the HMM May 26 2014 18 / 19



Conclusion

Literature
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