Traveling Waves in Stochastic Neural Field Equations

Eva Lang

RTG 1845 - Stochastic Analysis with Applications in Physics, Biology and Finance

TU Berlin Supervisor: Prof. Dr. Wilhelm Stannat

May 26, 2014

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

A Spiking Neuron

Figure: (a) Neuron $^{3}(b)$ Membrane potential activity recording in an awake cat 4

- neuron receives input from other neurons on the dendrites charging the membrane
- \blacktriangleright when the membrane potential crosses a certain threshold \rightarrow action potential
- ▶ transmitted to other neurons via synapses → () → () → () → () → ()
- ⁴ from Quasar Jarosz at en.wikipedia
 ⁴ from Steriade, Timofeev, Grenier, 2001

Traveling Waves in Brain Slices

Figure: Propagating activity in a brain slice ⁵

⁵From D.Pinto, S. Patrick, W. Huang, B. Connors: Initiation, Propagation, and Termination of Epileptiform Activity in Rodent Neocortex In Vitro Involve Distinct Mechanisms; The Journal of Neuroscience, 2005

The Neural Field Equation

$$rac{\partial}{\partial t}u(x,t) = -u(x,t) + \int_{-\infty}^{\infty}w(x-y)F(u(y,t))dy$$

- u(x, t): average membrane potential in the population of neurons at position x ∈ ℝ at time t
- ▶ $F : \mathbb{R} \to [0, 1]$: gain function; proportion of firing neurons in the population
- ▶ $w : \mathbb{R} \to [0,\infty)$: strength of synaptic connections between neurons at x and neurons at y

Traveling Waves

Theorem (Ermentrout, McLeod '93)

Assume that the equation has two stable fixed points separated by an unstable fixed point. Then there exists a unique (up to translations) monotone increasing wave profile $\hat{u} : \mathbb{R} \to \mathbb{R}$ and a unique wave speed $c \in \mathbb{R}$ such that

$$u^{TW}(x,t) := \hat{u}(x-ct)$$

is a traveling wave solution connecting the two stable states

0.8 0.6 0.4

Goals

- determine the influence of noise on the dynamics
- stochastic stability
- stochastic differential equation for the wave speed
- attempts in this direction: P. Bressloff, M. Webber 2012 ⁶(not rigorous)

⁶ P. C. Bressloff, M. A. Webber: Front Propagation in Stochastic Neural Fields; SIAM J. Applied Dynamical Systems, 2012

The Stochastic Neural Field Equation

want to realise the neural field equation as a stochastic evolution equation

 $du(x,t) = (-u(x,t) + w * F(u_t)(x)) dt + \sigma dW(x,t)$

- ▶ one possibility: work in weighted L² space (Faugeras, Inglis 2013)⁷
- ► consider the difference $v(x, t) = u(x, t) u^{TW}(x, t)$ leading to the equation

$$dv_t = \left(-v_t + w * \left(F(v_t + u_t^{TW}) - F(u_t^{TW})\right)\right) dt + \sigma dW_t$$

▶ (W_t) *Q*-Wiener process on \mathcal{L}^2 with $tr(Q) < \infty$

▶ for any initial condition v⁰ ∈ L², ∃! strong solution admitting a continuous modification

⁷O. Faugeras, J. Inglis: Stochastic Neural Field Equations: A Rigorous Footing; arXiv:1311.5446, 2013

Stability

- is the wave solution stable under small perturbations?
- ▶ in the deterministic case: if $\|v^0\|$ is small, does $\|v_t\| \to 0$?
- ▶ in the stochastic case: u_t = traveling wave + fluctuations around wave profile

Linearisation

Ansatz: linearise the equation around the traveling wave

$$dv_t = \left(-v_t + w * (F(v_t + u_t^{TW}) - F(u_t^{TW}))\right) dt + \sigma dW_t$$
$$= \left(-v_t + w * (F'(u_t^{TW})v_t)\right) dt + R(t, v_t) dt + \sigma dW_t$$

where

$$||R(t, v_t)|| = O(||v_t||^2)$$

then, in the deterministic case,

$$\frac{1}{2}\frac{d}{dt}\|v_t\|^2\approx \langle Lv_t,v_t\rangle$$

where

$$Lu = -u + w * (F'(u^{TW})u)$$

► cannot expect *L* to be strictly dissipative (i.e. $\langle Lu, u \rangle \leq -\kappa \|u\|^2$)

Adaptation of the Wave Speed

- need to adapt to the right phase of the wave
- ▶ idea: minimise the \mathcal{L}^2 -distance, i.e. find y^* such that

$$||u_t - u_t^{TW}(\cdot - y^*)|| = \min_y ||u_t - u_t^{TW}(\cdot - y)||$$

note that

$$\begin{split} \frac{1}{2} \frac{d}{ds} \|u_t - u_t^{TW}(\cdot - y(s))\|^2 \\ &= y'(s) \langle u_t - u_t^{TW}(\cdot - y(s)), \partial_x u_t^{TW}(\cdot - y(s)) \rangle \leq 0 \\ \text{for } y'(s) &= -m \langle u_t - u_t^{TW}(\cdot - y(s)), \partial_x u_t^{TW}(\cdot - y(s)) \rangle \text{ for any } \\ m &> 0 \end{split}$$

define the phase adaptation as the unique solution to the ode

$$C'(t) = c - m \langle u_t - \hat{u}(\cdot - C(t)), \hat{u}_x(\cdot - C(t)) \rangle$$

(P-a.s. in the stochastic case)

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

The Case c = 0

• $L(\hat{u}_x) = 0$ and (under some assumptions)

$$\langle Lu, u \rangle \leq -\kappa \|u\|^2 + K \langle u, \hat{u}_{\mathsf{X}} \rangle^2$$

in the deterministic case:

$$\frac{1}{2}\frac{d}{dt}\|\tilde{v}_t\|^2 \lesssim -\kappa \|\tilde{v}_t\|^2 + (K-m)\langle \hat{u}_x(\cdot - C(t)), \tilde{v}_t\rangle^2 \leq -\kappa \|\tilde{v}_t\|^2$$

in the stochastic case: $u_t \approx \hat{u}(\cdot - C(t)) + \text{Ornstein-Uhlenbeck process}$

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへで

The Case c = 0

►

- noise influences the speed of the wave
- ▶ for large relaxation constants *m*,

$$C(t) \approx -\frac{1}{\|\hat{u}_{x}\|^{2}} \left(\langle \tilde{v}_{0}, \hat{u}_{x} \rangle + \sigma \int_{0}^{t} \langle \hat{u}_{x} (\cdot - C(s)), dW_{s} \rangle \right)$$
$$\left[\sigma \int_{0}^{\cdot} \langle \hat{u}(x - C(t)), dW_{s} \rangle \right]_{t} \approx \sigma^{2} \langle u^{TW}, Qu^{TW} \rangle t$$

• ightarrow pprox Brownian motion

The Case c > 0

(

▶ for sufficiently small *c*

$$\langle -v + w * (F'(\hat{u})v), v
angle \leq -\kappa_c \|v\|^2 + K_c \langle v, \hat{u}_x
angle^2$$
L., 2013)

•
$$c = \frac{\int_0^1 u - F(u) du}{\int \hat{u}_x^2(x) F'(\hat{u}(x)) dx}$$
 is generally not known

• control over *c* in terms of *F*: for $w(x) = \frac{1}{2\alpha}e^{-\frac{|x|}{\alpha}}$

$$\frac{\alpha}{\sqrt{2}} \frac{\int_0^1 u - F(u) du}{\sqrt{\int_0^a u - F(u) du}} \le c \le \frac{\alpha}{4} \frac{\int_0^1 u - F(u) du}{\int_a^1 F(u) - u du}$$

where F(a) = a

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Traveling waves in stochastic neural field equations - Eva Lang

Numerical Simulations: c = 0

$$c = 0$$
: $c > 0$:

green: reference wave profile red: wave profile moving at adapted speed blue: solution to the stochastic neural field equation

The Noise

$$\frac{d}{dt}u^{i}(t) = \left(-u^{i}(t) + \sum_{j} w_{i,j}F(u^{j}(t))\right) + "noise"$$

- source of the noise?
- source of intrinsic noise: finite size effects
- ▶ idea: set up a continuous time Markov chain describing the evolution of the activity a (= fraction of 'active' neurons) of M coupled populations of finite size N that yields the NFE for u = F⁻¹(a) in the limit
 - Buice, Cowan '07; Bressloff '09; Buckwar, Riedler '13

The Noise

- Markov chain: M populations à N neurons
- activity in population *i* jumps from *aⁱ* to *aⁱ* ± 1/N at rate *NF'*(*F*⁻¹(*aⁱ*)) (-*F*⁻¹(*aⁱ*) + ∑_j *w_{i,j}a^j*)_± *daⁱ_t* = *F'*(*F*⁻¹(*aⁱ(t)*)) (-*F*⁻¹(*aⁱ_t*) + ∑_j *w_{i,j}a^j(t)*) + *dMⁱ_t*√*N*[*Mⁱ*]_t ^{*N*→∞} ∫₀^t *F'*(*F*⁻¹(*aⁱ_s*)) |-*F*⁻¹(*aⁱ_s*) + ∑_j *w_{i,j}a^j_s*| *ds*

suggests the diffusion approximation

$$du_t^i = -u_t^i + \sum_j w_{i,j} F(u_t^j) + \frac{1}{\sqrt{N}} \sqrt{\frac{\left|-u_t^i + \sum_j w_{i,j} F(u_t^j)\right|}{F'(u_t^i)}} dB_t^i$$

► yields a stochastic NFE in the continuum limit