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Motivation

Why Interacting Particle Systems?

Mathematical models for different phenomena arising in areas such
as Genetics, Biology, Statistical Physics, Epidemiology, Finance,
Economy, etc.

Why a fractional dynamic?

Markov property may be NOT appropriate e.g. for modeling
transport phenomena where particles can stick and trap during their
motion.

↓

Non-Markovian Interacting Particle Systems
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Our particle system

Consider a system with a fixed, large number of particles, |N|, from d
different types

S := {1, 2, . . . , d}.

A configuration will be denoted by

N := (n1, n2, . . . , nd), ni ∈ N,

where ni :=number of particles of type i , and |N| =
∑d

i=1 ni .

System evolves randomly: particles mutate after random times.

There is a final cost depending on the final state of the system

A controller is able to influence the dynamic.
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1 How to describe the dynamic of the system?

2
What is the minimal cost?

3 What is the strategy to get such a cost?

Questions of interest!
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1 How to describe the dynamic of the system?

2
What is the minimal cost?

3 What is the strategy to get such a cost?

Questions of interest!

- - - - - - Stochastic control problem.- - - - - - -

Aim: Minimize the final cost.
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Solving the problem

Step 1. Modeling

State an appropriate underlying dynamic

Step 2. Controlled framework

Define the possible control actions

Step 3. Optimization

Choose the methodology to solve the problem
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Background

1 Fractional Calculus. Integral and derivatives of arbitrary real order.

For f continuously differentiable and bounded the Caputo fractional
derivate of order α ∈ (0, 1) is defined by

Cα0 f (x) := α
Γ(1−α)

∫∞
0

[f (x)− f (x − s)]s−α−1ds

2 Stable laws and their domain of attraction. A r.v. Y is a stable
r.v. if there exist {an}, an > 0, and {bn} such that

X1 + X2 + · · ·+ Xn

an
+ bn

d→ Y , as n→∞

where Xn, n ≥ 0 are i.i.d. r.v. X1 is said to belong to the DOA of Y .
Properties

Heavy-tail behavior . Let 0 < α < 1 and ν(ds) be the law of Y ,∫∞
t
ν(ds) ∼ 1

Γ(1−α)tα
, as t →∞.

E |Y | =∞ for α ∈ (0, 1).
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Step 1. Modeling
Step 2. Controlled setting
Step 3. Optimization

Step 1. Modeling

Assumptions:

Long waiting times. The waiting time for jumping from type i to type j
are given by τij ∈ DOA(αij , 1) where

αij ∈ (0, 1), αii = 0
d∑

i,j=1,j 6=i

αij < 1.

Large number of particles. Parameters αij depend on the proportion of
each type of particle:

αij = αij(n̄i , n̄j),

where n̄i = ni/|N|.

Result 1 (Heavy-tail semi-Markov IPS).

The system is described as a semi-Markov process with waiting times
attracted by stable laws whose parameters depend on the current state.
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Step 1. Model

Semi-Markov IPS

Let Yt denote the configuration of the system at time t ≥ 0. Then

Y = {Yt}t≥0 is a Semi-Markov process on Σ
|N|
d such that

a) the waiting times, τ(N), are such that

τ(N) ∈ DOA(α(N/|N|), 1), if Xn = N, ∀N ∈ Σ
|N|
d ;

where

α (N/|N|) :=
d∑

i,j=1,j 6=i

αij (ni/|N|, nj/|N|).

b) its kernel F (t) = {Fx,y (t)}
x,y∈Σ

|N|
d

is given by

FN,y (t) =

{ ∫ t
0

∏
(k,l)6=(i,j) P

[
s ≤ τkl (nk/|N|, nl/|N|)

]
νij (ds|ni/|N|, nj/|N|), y = N ij ,

0 else
(1)

where νij (ds|ni/|N|, nj/|N|) is the law of τij(ni/|N|, nj/|N|).
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Step 2. Controlled setting

Assumptions

1) Observation period : [0,T ], for T > 0 fixed.

2) Control dynamic: after each jump, the controller chooses an action u ∈ U
and applies it to each {αij}i,j∈S .

3) Mayer type problem. Only a terminal cost given by H : Σ
|N|
d → R+.
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3) Mayer type problem. Only a terminal cost given by H : Σ
|N|
d → R+.
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Step 3. Optimization

Optimality criterion.

Expected total cost. For initial state x0 ∈ Σ
|N|
d at time T − t0, and for a

control path ũ ∈ U , the cost functional is defined by

J(t0, x0, ũ) := Et0,x0 [H(Y ũ(T ))].

- - - - - - - - - - - - - - - - - - - - - - -

Objective: Minimize J by an appropriate selection of actions:

inf
ũ∈U

J(t0, x0; ũ).
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Dynamic Programming Approach

Given the cost functional, instead of minimizing J(t0, x0, ũ), consider the
family of optimization problems

V (t, x) := inf
ũ∈U

J(t, x , ũ)

for (t, x) ∈ [0, t0]× Σ
|N|
d .

V (·, ·) is called the value function associated with Y ũ.

- - - - - - Goal- - - - - - -

Derive dynamic relationships among these problems, and solve all of
them.
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Dealing with a large number of particles...

Procedure:

a) Take a system with |N| particles.

b) Using h = 1/|N|, scale both space (|N| → h|N|) and time
(τij → τijh

1/αij ,).

c) Consider the payoff function for the scaled process, V h(t, µ̃0).

d) Let |N| → ∞.

Result 2. (Fractional HJB type equation)

The evolution equation for the payoff function of a scaled process has
been heuristically derived and it satisfies a Fractional Partial Differential
Equation.
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Fractional dynamic programming equation

Let V̂ (t, x) be the value function associated with the limiting process of a

scaled version of Y ũ. Then, under appropriate assumptions, V̂ satisfies

A∗αV̂ (t, x) = −V̂ (0, x)
t−α

Γ(1 − α)
−

d∑
i,j=1;j 6=i

P[Mx,u = (i, j) ]

 ∂V̂
∂xj

(t, x) −
∂V̂

∂xi

(t, x)

 , (2)

with initial data V (0, x) = H(x), where α = α(x , t, u), x ∈ Σd , and

P[Mx,u = (i, j)] =

∫ ∞
0

∏
(k,l)6=(i,j)

P[s ≤ τkl (xk/|N|, xl/|N|, t, u)]νij (ds|xi/|N|, xj/|N|, t, u), (3)

and A∗α is the dual of the generator of an α−stable subordinator:

A∗α f (x) = −
1

Γ(−α)

∫ ∞
0

(f (x − s) − f (x))
ds

s1+α
, α ∈ (0, 1).
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Summary

The main steps for answering our questions and their implications.
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Final comments

Generalizations from discrete setting ( semi-Markov approach) to
continuous setting (measure-valued approach).

Consider more general interactions and control frameworks.

Ongoing research: Proof of the weak convergence of the underlying
stochastic processes.
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Definition

Let f ∈ S(Rd), the operator

Iα0 f (x) :=
1

Γ(α)

∫ x

0

(x − s)α−1f (s)ds. (4)

is called the left-sided Riemann-Liouvile fractional integral of order
α > 0.

- - - - - - - - - - - - -
the Cauchy integral formula

I n0 f (x) =
1

(n − 1)!

∫ x

0

(x − s)n−1f (s)ds, n > 0. (5)
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Definition

Let α ∈ R+ and m = dαe. The operator Dα
0 , defined by

D0 x
αf (x) := DmIm−α0 f (x), α > 0, α /∈ N, (6)

is called the left-sided Riemann-Liouville fractional differential
operator of order α > 0.

- - - - - - - - - - - - -

Dm = Dn−mIm, n,m ∈ N
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