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Motivation

Why Interacting Particle Systems?

Mathematical models for different phenomena arising in areas such
as Genetics, Biology, Statistical Physics, Epidemiology, Finance,
Economy, etc.

Why a fractional dynamic?

Markov property may be NOT appropriate e.g. for modeling
transport phenomena where particles can stick and trap during their
motion.

↓

Non-Markovian Interacting Particle Systems

Controlled Fractional Dynamics and IPS Department of Statistics, University of Warwick



Motivation
Background

Methodology
Summary

Motivation

Why Interacting Particle Systems?

Mathematical models for different phenomena arising in areas such
as Genetics, Biology, Statistical Physics, Epidemiology, Finance,
Economy, etc.

Why a fractional dynamic?

Markov property may be NOT appropriate e.g. for modeling
transport phenomena where particles can stick and trap during their
motion.

↓

Non-Markovian Interacting Particle Systems

Controlled Fractional Dynamics and IPS Department of Statistics, University of Warwick



Motivation
Background

Methodology
Summary

Motivation

Why Interacting Particle Systems?

Mathematical models for different phenomena arising in areas such
as Genetics, Biology, Statistical Physics, Epidemiology, Finance,
Economy, etc.

Why a fractional dynamic?

Markov property may be NOT appropriate e.g. for modeling
transport phenomena where particles can stick and trap during their
motion.

↓

Non-Markovian Interacting Particle Systems

Controlled Fractional Dynamics and IPS Department of Statistics, University of Warwick



Motivation
Background

Methodology
Summary

Motivation

Why Interacting Particle Systems?

Mathematical models for different phenomena arising in areas such
as Genetics, Biology, Statistical Physics, Epidemiology, Finance,
Economy, etc.

Why a fractional dynamic?

Markov property may be NOT appropriate e.g. for modeling
transport phenomena where particles can stick and trap during their
motion.

↓

Non-Markovian Interacting Particle Systems

Controlled Fractional Dynamics and IPS Department of Statistics, University of Warwick



Motivation
Background

Methodology
Summary

Motivation

Why Interacting Particle Systems?

Mathematical models for different phenomena arising in areas such
as Genetics, Biology, Statistical Physics, Epidemiology, Finance,
Economy, etc.

Why a fractional dynamic?

Markov property may be NOT appropriate e.g. for modeling
transport phenomena where particles can stick and trap during their
motion.

↓

Non-Markovian Interacting Particle Systems

Controlled Fractional Dynamics and IPS Department of Statistics, University of Warwick



Motivation
Background

Methodology
Summary

Motivation

Why Interacting Particle Systems?

Mathematical models for different phenomena arising in areas such
as Genetics, Biology, Statistical Physics, Epidemiology, Finance,
Economy, etc.

Why a fractional dynamic?

Markov property may be NOT appropriate e.g. for modeling
transport phenomena where particles can stick and trap during their
motion.

↓

Non-Markovian Interacting Particle Systems

Controlled Fractional Dynamics and IPS Department of Statistics, University of Warwick



Motivation
Background

Methodology
Summary

Our particle system

Consider a system with a fixed, large number of particles, |N|, from d
different types

S := {1, 2, . . . , d}.

A configuration will be denoted by

N := (n1, n2, . . . , nd), ni ∈ N,

where ni :=number of particles of type i , and |N| =
∑d

i=1 ni .

System evolves randomly: particles mutate after random times.

There is a final cost depending on the final state of the system

A controller is able to influence the dynamic.
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1 How to describe the dynamic of the system?

2
What is the minimal cost?

3 What is the strategy to get such a cost?

Questions of interest!
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1 How to describe the dynamic of the system?

2
What is the minimal cost?

3 What is the strategy to get such a cost?

Questions of interest!

- - - - - - Stochastic control problem.- - - - - - -

Aim: Minimize the final cost.
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Solving the problem

Step 1. Modeling

State an appropriate underlying dynamic

Step 2. Controlled framework

Define the possible control actions

Step 3. Optimization

Choose the methodology to solve the problem
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Background

1 Fractional Calculus. Integral and derivatives of arbitrary real order.

For f continuously differentiable and bounded the Caputo fractional
derivate of order α ∈ (0, 1) is defined by

Cα0 f (x) := α
Γ(1−α)

∫∞
0

[f (x)− f (x − s)]s−α−1ds

2 Stable laws and their domain of attraction. A r.v. Y is a stable
r.v. if there exist {an}, an > 0, and {bn} such that

X1 + X2 + · · ·+ Xn

an
+ bn

d→ Y , as n→∞

where Xn, n ≥ 0 are i.i.d. r.v. X1 is said to belong to the DOA of Y .
Properties

Heavy-tail behavior . Let 0 < α < 1 and ν(ds) be the law of Y ,∫∞
t
ν(ds) ∼ 1

Γ(1−α)tα
, as t →∞.

E |Y | =∞ for α ∈ (0, 1).
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Step 1. Modeling
Step 2. Controlled setting
Step 3. Optimization

Step 1. Modeling

Assumptions:

Long waiting times. The waiting time for jumping from type i to type j
are given by τij ∈ DOA(αij , 1) where

αij ∈ (0, 1), αii = 0
d∑

i,j=1,j 6=i

αij < 1.

Large number of particles. Parameters αij depend on the proportion of
each type of particle:

αij = αij(n̄i , n̄j),

where n̄i = ni/|N|.

Result 1 (Heavy-tail semi-Markov IPS).

The system is described as a semi-Markov process with waiting times
attracted by stable laws whose parameters depend on the current state.
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Step 1. Model

Semi-Markov IPS

Let Yt denote the configuration of the system at time t ≥ 0. Then

Y = {Yt}t≥0 is a Semi-Markov process on Σ
|N|
d such that

a) the waiting times, τ(N), are such that

τ(N) ∈ DOA(α(N/|N|), 1), if Xn = N, ∀N ∈ Σ
|N|
d ;

where

α (N/|N|) :=
d∑

i,j=1,j 6=i

αij (ni/|N|, nj/|N|).

b) its kernel F (t) = {Fx,y (t)}
x,y∈Σ

|N|
d

is given by

FN,y (t) =

{ ∫ t
0

∏
(k,l)6=(i,j) P

[
s ≤ τkl (nk/|N|, nl/|N|)

]
νij (ds|ni/|N|, nj/|N|), y = N ij ,

0 else
(1)

where νij (ds|ni/|N|, nj/|N|) is the law of τij(ni/|N|, nj/|N|).
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Step 2. Controlled setting

Assumptions

1) Observation period : [0,T ], for T > 0 fixed.

2) Control dynamic: after each jump, the controller chooses an action u ∈ U
and applies it to each {αij}i,j∈S .

3) Mayer type problem. Only a terminal cost given by H : Σ
|N|
d → R+.
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3) Mayer type problem. Only a terminal cost given by H : Σ
|N|
d → R+.
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Step 3. Optimization

Optimality criterion.

Expected total cost. For initial state x0 ∈ Σ
|N|
d at time T − t0, and for a

control path ũ ∈ U , the cost functional is defined by

J(t0, x0, ũ) := Et0,x0 [H(Y ũ(T ))].

- - - - - - - - - - - - - - - - - - - - - - -

Objective: Minimize J by an appropriate selection of actions:

inf
ũ∈U

J(t0, x0; ũ).
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Dynamic Programming Approach

Given the cost functional, instead of minimizing J(t0, x0, ũ), consider the
family of optimization problems

V (t, x) := inf
ũ∈U

J(t, x , ũ)

for (t, x) ∈ [0, t0]× Σ
|N|
d .

V (·, ·) is called the value function associated with Y ũ.

- - - - - - Goal- - - - - - -

Derive dynamic relationships among these problems, and solve all of
them.
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ũ∈U

J(t, x , ũ)
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Dealing with a large number of particles...

Procedure:

a) Take a system with |N| particles.

b) Using h = 1/|N|, scale both space (|N| → h|N|) and time
(τij → τijh

1/αij ,).

c) Consider the payoff function for the scaled process, V h(t, µ̃0).

d) Let |N| → ∞.

Result 2. (Fractional HJB type equation)

The evolution equation for the payoff function of a scaled process has
been heuristically derived and it satisfies a Fractional Partial Differential
Equation.
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Fractional dynamic programming equation

Let V̂ (t, x) be the value function associated with the limiting process of a

scaled version of Y ũ. Then, under appropriate assumptions, V̂ satisfies

A∗αV̂ (t, x) = −V̂ (0, x)
t−α

Γ(1 − α)
−

d∑
i,j=1;j 6=i

P[Mx,u = (i, j) ]

 ∂V̂
∂xj

(t, x) −
∂V̂

∂xi

(t, x)

 , (2)

with initial data V (0, x) = H(x), where α = α(x , t, u), x ∈ Σd , and

P[Mx,u = (i, j)] =

∫ ∞
0

∏
(k,l)6=(i,j)

P[s ≤ τkl (xk/|N|, xl/|N|, t, u)]νij (ds|xi/|N|, xj/|N|, t, u), (3)

and A∗α is the dual of the generator of an α−stable subordinator:

A∗α f (x) = −
1

Γ(−α)

∫ ∞
0

(f (x − s) − f (x))
ds

s1+α
, α ∈ (0, 1).
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Summary

The main steps for answering our questions and their implications.
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Final comments

Generalizations from discrete setting ( semi-Markov approach) to
continuous setting (measure-valued approach).

Consider more general interactions and control frameworks.

Ongoing research: Proof of the weak convergence of the underlying
stochastic processes.
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Definition

Let f ∈ S(Rd), the operator

Iα0 f (x) :=
1

Γ(α)

∫ x

0

(x − s)α−1f (s)ds. (4)

is called the left-sided Riemann-Liouvile fractional integral of order
α > 0.

- - - - - - - - - - - - -
the Cauchy integral formula

I n0 f (x) =
1

(n − 1)!

∫ x

0

(x − s)n−1f (s)ds, n > 0. (5)

Controlled Fractional Dynamics and IPS Department of Statistics, University of Warwick



Motivation
Background

Methodology
Summary

Definition

Let f ∈ S(Rd), the operator

Iα0 f (x) :=
1

Γ(α)

∫ x

0

(x − s)α−1f (s)ds. (4)

is called the left-sided Riemann-Liouvile fractional integral of order
α > 0.

- - - - - - - - - - - - -
the Cauchy integral formula

I n0 f (x) =
1

(n − 1)!

∫ x

0

(x − s)n−1f (s)ds, n > 0. (5)

Controlled Fractional Dynamics and IPS Department of Statistics, University of Warwick



Motivation
Background

Methodology
Summary

Definition

Let α ∈ R+ and m = dαe. The operator Dα
0 , defined by

D0 x
αf (x) := DmIm−α0 f (x), α > 0, α /∈ N, (6)

is called the left-sided Riemann-Liouville fractional differential
operator of order α > 0.

- - - - - - - - - - - - -

Dm = Dn−mIm, n,m ∈ N
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