Controlled Fractional Dynamics and Interacting Particle Systems

Ma. Elena Hernández-Hernández Supervisor: Prof. Vassili Kolokoltsov

Department of Statistics, University of Warwick

Young Women in Probability 2014 May 27, 2014

3 Methodology

- Step 1. Modeling
- Step 2. Controlled setting
- Step 3. Optimization

Motivation

Motivation

Why Interacting Particle Systems?

Why Interacting Particle Systems?

• Mathematical models for different phenomena arising in areas such as Genetics, Biology, Statistical Physics, Epidemiology, Finance, Economy, etc.

Why Interacting Particle Systems?

• Mathematical models for different phenomena arising in areas such as Genetics, Biology, Statistical Physics, Epidemiology, Finance, Economy, etc.

Why a fractional dynamic?

Why Interacting Particle Systems?

• Mathematical models for different phenomena arising in areas such as Genetics, Biology, Statistical Physics, Epidemiology, Finance, Economy, etc.

Why a fractional dynamic?

• Markov property may be NOT appropriate e.g. for modeling transport phenomena where particles can stick and trap during their motion.

Why Interacting Particle Systems?

• Mathematical models for different phenomena arising in areas such as Genetics, Biology, Statistical Physics, Epidemiology, Finance, Economy, etc.

Why a fractional dynamic?

• Markov property may be NOT appropriate e.g. for modeling transport phenomena where particles can stick and trap during their motion.

 \downarrow

Non-Markovian Interacting Particle Systems

Consider a system with a fixed, large number of particles, |N|, from d different types

$$\mathcal{S}:=\{1,2,\ldots,d\}.$$

Consider a system with a fixed, large number of particles, |N|, from d different types

$$\mathcal{S}:=\{1,2,\ldots,d\}.$$

A configuration will be denoted by

$$N := (n_1, n_2, \ldots, n_d), \quad n_i \in \mathbb{N},$$

where n_i :=number of particles of type *i*, and $|N| = \sum_{i=1}^{d} n_i$.

Consider a system with a fixed, large number of particles, |N|, from d different types

$$\mathcal{S}:=\{1,2,\ldots,d\}.$$

A configuration will be denoted by

$$N:=(n_1,n_2,\ldots,n_d), \quad n_i\in\mathbb{N},$$

where n_i :=number of particles of type *i*, and $|N| = \sum_{i=1}^{d} n_i$.

• System evolves randomly: particles mutate after random times.

Consider a system with a fixed, large number of particles, |N|, from d different types

$$\mathcal{S}:=\{1,2,\ldots,d\}.$$

A configuration will be denoted by

$$N:=(n_1,n_2,\ldots,n_d), \quad n_i\in\mathbb{N},$$

where n_i :=number of particles of type *i*, and $|N| = \sum_{i=1}^{d} n_i$.

- System evolves randomly: particles mutate after random times.
- There is a final cost depending on the final state of the system

Consider a system with a fixed, large number of particles, |N|, from d different types

$$\mathcal{S}:=\{1,2,\ldots,d\}.$$

A configuration will be denoted by

$$N:=(n_1,n_2,\ldots,n_d), \quad n_i\in\mathbb{N},$$

where n_i :=number of particles of type *i*, and $|N| = \sum_{i=1}^{d} n_i$.

- System evolves randomly: particles mutate after random times.
- There is a final cost depending on the final state of the system
- A controller is able to influence the dynamic.

Questions of interest!

Questions of interest!

- How to describe the dynamic of the system?
- What is the minimal cost?
- What is the strategy to get such a cost?

- - - - - Stochastic control problem.- - - - - -

Aim: Minimize the final cost.

Solving the problem

Solving the problem

Step 1. Modeling

• State an appropriate underlying dynamic

Solving the problem

Step 1. Modeling

• State an appropriate underlying dynamic

Step 2. Controlled framework

Define the possible control actions

Solving the problem

Step 1. Modeling

State an appropriate underlying dynamic

Step 2. Controlled framework

Define the possible control actions

Step 3. Optimization

• Choose the methodology to solve the problem

Background

Fractional Calculus. Integral and derivatives of arbitrary real order.

Integral and derivatives of arbitrary real order.

For f continuously differentiable and bounded the Caputo fractional derivate of order $\alpha \in (0, 1)$ is defined by

$$C_0^{\alpha}f(x) := rac{lpha}{\Gamma(1-lpha)} \int_0^{\infty} [f(x) - f(x-s)]s^{-lpha - 1}ds$$

Integral and derivatives of arbitrary real order.

For f continuously differentiable and bounded *the Caputo fractional derivate* of order $\alpha \in (0, 1)$ is defined by

$$C_0^{\alpha}f(x) := rac{lpha}{\Gamma(1-lpha)} \int_0^{\infty} [f(x) - f(x-s)]s^{-lpha - 1}ds$$

② Stable laws and their domain of attraction.

Integral and derivatives of arbitrary real order.

For f continuously differentiable and bounded the Caputo fractional derivate of order $\alpha \in (0, 1)$ is defined by

$$C_0^{\alpha}f(x) := rac{lpha}{\Gamma(1-lpha)} \int_0^{\infty} [f(x) - f(x-s)]s^{-lpha - 1}ds$$

Stable laws and their domain of attraction. A r.v. Y is a stable r.v. if there exist {a_n}, a_n > 0, and {b_n} such that

$$\frac{X_1+X_2+\dots+X_n}{a_n}+b_n\stackrel{d}{\to}Y, \quad \text{ as } n\to\infty$$

where X_n , $n \ge 0$ are i.i.d. r.v. X_1 is said to belong to the *DOA* of *Y*.

Integral and derivatives of arbitrary real order.

For f continuously differentiable and bounded the Caputo fractional derivate of order $\alpha \in (0, 1)$ is defined by

$$C_0^{\alpha}f(x) := rac{lpha}{\Gamma(1-lpha)} \int_0^{\infty} [f(x) - f(x-s)]s^{-lpha - 1}ds$$

Stable laws and their domain of attraction. A r.v. Y is a stable r.v. if there exist {a_n}, a_n > 0, and {b_n} such that

$$\frac{X_1+X_2+\dots+X_n}{a_n}+b_n\stackrel{d}{\to}Y, \quad \text{ as } n\to\infty$$

where X_n , $n \ge 0$ are i.i.d. r.v. X_1 is said to belong to the *DOA* of *Y*. **Properties**

Integral and derivatives of arbitrary real order.

For f continuously differentiable and bounded *the Caputo fractional derivate* of order $\alpha \in (0, 1)$ is defined by

$$C_0^{\alpha}f(x) := rac{lpha}{\Gamma(1-lpha)} \int_0^{\infty} [f(x) - f(x-s)]s^{-lpha-1}ds$$

Stable laws and their domain of attraction. A r.v. Y is a stable r.v. if there exist {a_n}, a_n > 0, and {b_n} such that

$$\frac{X_1+X_2+\dots+X_n}{a_n}+b_n\stackrel{d}{\to}Y, \quad \text{ as } n\to\infty$$

where X_n , $n \ge 0$ are i.i.d. r.v. X_1 is said to belong to the *DOA* of *Y*. **Properties**

• Heavy-tail behavior. Let $0 < \alpha < 1$ and $\nu(ds)$ be the law of Y, $\int_t^{\infty} \nu(ds) \sim \frac{1}{\Gamma(1-\alpha)t^{\alpha}}, \quad \text{ as } t \to \infty.$

Integral and derivatives of arbitrary real order.

For f continuously differentiable and bounded *the Caputo fractional derivate* of order $\alpha \in (0, 1)$ is defined by

$$C_0^{\alpha}f(x) := rac{lpha}{\Gamma(1-lpha)} \int_0^{\infty} [f(x) - f(x-s)]s^{-lpha-1}ds$$

Stable laws and their domain of attraction. A r.v. Y is a stable r.v. if there exist {a_n}, a_n > 0, and {b_n} such that

$$\frac{X_1+X_2+\dots+X_n}{a_n}+b_n\stackrel{d}{\to}Y, \quad \text{ as } n\to\infty$$

where X_n , $n \ge 0$ are i.i.d. r.v. X_1 is said to belong to the *DOA* of *Y*. **Properties**

- Heavy-tail behavior. Let $0 < \alpha < 1$ and $\nu(ds)$ be the law of Y, $\int_{t}^{\infty} \nu(ds) \sim \frac{1}{\Gamma(1-\alpha)t^{\alpha}}$, as $t \to \infty$.
- $E|Y| = \infty$ for $\alpha \in (0, 1)$.

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 1. Modeling

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 1. Modeling

Assumptions:

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 1. Modeling

Assumptions:

Long waiting times. The waiting time for jumping from type *i* to type *j* are given by τ_{ij} ∈ DOA(α_{ij}, 1) where

$$lpha_{ij}\in(0,1),\quad lpha_{ii}=0\quad \sum_{i,j=1,j
eq i}^dlpha_{ij}<1.$$

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 1. Modeling

Assumptions:

Long waiting times. The waiting time for jumping from type *i* to type *j* are given by τ_{ij} ∈ DOA(α_{ij}, 1) where

$$lpha_{ij}\in (0,1), \quad lpha_{ii}=0 \quad \sum_{i,j=1, j
eq i}^d lpha_{ij}<1.$$

• Large number of particles. Parameters *α_{ij}* depend on the proportion of each type of particle:

$$\alpha_{ij} = \alpha_{ij}(\bar{n}_i, \bar{n}_j),$$

where $\bar{n}_i = n_i / |N|$.

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 1. Modeling

Assumptions:

Long waiting times. The waiting time for jumping from type *i* to type *j* are given by τ_{ij} ∈ DOA(α_{ij}, 1) where

$$lpha_{ij}\in (0,1), \quad lpha_{ii}=0 \quad \sum_{i,j=1, j
eq i}^d lpha_{ij}<1.$$

• Large number of particles. Parameters *α_{ij}* depend on the proportion of each type of particle:

$$\alpha_{ij} = \alpha_{ij}(\bar{n}_i, \bar{n}_j),$$

where $\bar{n}_i = n_i / |N|$.

Result 1 (Heavy-tail semi-Markov IPS).

The system is described as a semi-Markov process with waiting times attracted by stable laws whose parameters depend on the current state.

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 1. Model

Semi-Markov IPS

Let Y_t denote the configuration of the system at time $t \ge 0$. Then $Y = \{Y_t\}_{t\ge 0}$ is a Semi-Markov process on $\Sigma_d^{|N|}$ such that

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 1. Model

Semi-Markov IPS

Let Y_t denote the configuration of the system at time $t \ge 0$. Then $Y = \{Y_t\}_{t\ge 0}$ is a Semi-Markov process on $\Sigma_d^{|N|}$ such that a) the waiting times, $\tau(N)$, are such that

 $au(N) \in DOA(\alpha(N/|N|), 1), \quad \text{ if } X_n = N, \ \forall N \in \Sigma_d^{|N|};$

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 1. Model

Semi-Markov IPS

Let Y_t denote the configuration of the system at time $t \ge 0$. Then $Y = \{Y_t\}_{t\ge 0}$ is a Semi-Markov process on $\Sigma_d^{|N|}$ such that a) the waiting times, $\tau(N)$, are such that

$$\tau(N) \in DOA(\alpha(N/|N|), 1), \quad \text{ if } X_n = N, \ \forall N \in \Sigma_d^{|N|};$$

where

$$\alpha(\mathbf{N}/|\mathbf{N}|) := \sum_{i,j=1,j\neq i}^{d} \alpha_{ij}(\mathbf{n}_i/|\mathbf{N}|, \mathbf{n}_j/|\mathbf{N}|).$$

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 1. Model

Semi-Markov IPS

Let Y_t denote the configuration of the system at time $t \ge 0$. Then $Y = \{Y_t\}_{t\ge 0}$ is a Semi-Markov process on $\Sigma_d^{|N|}$ such that a) the waiting times, $\tau(N)$, are such that

$$au(N) \in DOA(lpha(N/|N|), 1), \quad \text{ if } X_n = N, \ \forall N \in \Sigma_d^{|N|};$$

where

$$\alpha(N/|N|) := \sum_{i,j=1,j\neq i}^d \alpha_{ij}(n_i/|N|, n_j/|N|).$$

b) its kernel $F(t) = \{F_{x,y}(t)\}_{x,y \in \Sigma_d^{|N|}}$ is given by

$$F_{N,y}(t) = \begin{cases} \int_0^t \prod_{(k,l) \neq (i,j)} P[s \le \tau_{kl}(n_k/|N|, n_l/|N|)] \nu_{ij}(ds|n_i/|N|, n_j/|N|), & y = N^{ij}, \\ 0 & else \\ (1) \end{cases}$$

where $\nu_{ij}(ds|n_i/|N|, n_j/|N|)$ is the law of $\tau_{ij}(n_i/|N|, n_j/|N|)$.

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 2. Controlled setting

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 2. Controlled setting

Assumptions

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 2. Controlled setting

Assumptions

1) Observation period: [0, T], for T > 0 fixed.

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 2. Controlled setting

Assumptions

- 1) Observation period: [0, T], for T > 0 fixed.
- Control dynamic: after each jump, the controller chooses an action u ∈ U and applies it to each {α_{ij}}_{i,j∈S}.

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 2. Controlled setting

Assumptions

- 1) Observation period: [0, T], for T > 0 fixed.
- Control dynamic: after each jump, the controller chooses an action u ∈ U and applies it to each {α_{ij}}_{i,j∈S}.
- 3) Mayer type problem. Only a terminal cost given by $H: \Sigma_d^{|N|} \to \mathbb{R}^+$.

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 3. Optimization

Optimality criterion.

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 3. Optimization

Optimality criterion.

Expected total cost. For initial state $x_0 \in \Sigma_d^{|N|}$ at time $T - t_0$, and for a control path $\tilde{u} \in \mathcal{U}$, the cost functional is defined by

$$J(t_0, x_0, \tilde{u}) := E_{t_0, x_0}[H(Y^{\tilde{u}}(T))].$$

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Step 3. Optimization

Optimality criterion.

Expected total cost. For initial state $x_0 \in \Sigma_d^{|N|}$ at time $T - t_0$, and for a control path $\tilde{u} \in \mathcal{U}$, the cost functional is defined by

$$J(t_0, x_0, \tilde{u}) := E_{t_0, x_0}[H(Y^{\tilde{u}}(T))].$$

Objective: Minimize J by an appropriate selection of actions:

 $\inf_{\tilde{u}\in\mathcal{U}}J(t_0,x_0;\tilde{u}).$

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Dynamic Programming Approach

Given the cost functional, instead of minimizing $J(t_0, x_0, \tilde{u})$, consider the **family** of optimization problems

$$V(t,x) := \inf_{\widetilde{u} \in \mathcal{U}} J(t,x,\widetilde{u})$$

for $(t,x) \in [0,t_0] \times \Sigma_d^{|N|}$.

 $V(\cdot, \cdot)$ is called the *value function* associated with $Y^{\tilde{u}}$.

Step 1. Modeling Step 2. Controlled setting Step 3. Optimization

Dynamic Programming Approach

Given the cost functional, instead of minimizing $J(t_0, x_0, \tilde{u})$, consider the **family** of optimization problems

$$V(t,x) := \inf_{\widetilde{u} \in \mathcal{U}} J(t,x,\widetilde{u})$$

for $(t,x) \in [0,t_0] \times \Sigma_d^{|N|}$.

 $V(\cdot, \cdot)$ is called the *value function* associated with $Y^{\tilde{u}}$.

Derive *dynamic* relationships among these problems, and *solve all of them*.

Motivation Background Methodology Summary	Step 1. Modeling Step 2. Controlled setting Step 3. Optimization
--	--

Motivation Background Methodology Summary	Step 1. Modeling Step 2. Controlled setting Step 3. Optimization
--	--

Procedure:

a) Take a system with |N| particles.

- a) Take a system with |N| particles.
- b) Using h = 1/|N|, scale both space $(|N| \rightarrow h|N|)$ and time $(\tau_{ij} \rightarrow \tau_{ij}h^{1/\alpha_{ij}})$.

Motivation Background Methodology Summary	tep 1. Modeling tep 2. Controlled setting tep 3. Optimization	
--	---	--

- a) Take a system with |N| particles.
- b) Using h = 1/|N|, scale both space $(|N| \rightarrow h|N|)$ and time $(\tau_{ij} \rightarrow \tau_{ij}h^{1/\alpha_{ij}})$.
- c) Consider the payoff function for the scaled process, $V^h(t, \tilde{\mu_0})$.

Motivation Step 1. Modeling Background Step 2. Controlled setting Summary Step 3. Optimization
--

- a) Take a system with |N| particles.
- b) Using h = 1/|N|, scale both space $(|N| \rightarrow h|N|)$ and time $(\tau_{ij} \rightarrow \tau_{ij}h^{1/\alpha_{ij}})$.
- c) Consider the payoff function for the scaled process, $V^h(t, \tilde{\mu_0})$.
- d) Let $|N| \to \infty$.

Motivation Background Methodology Summary	tep 1. Mo tep 2. Co tep 3. Op	odeling ntrolled setting otimization
--	-------------------------------------	--

Procedure:

- a) Take a system with |N| particles.
- b) Using h = 1/|N|, scale both space $(|N| \rightarrow h|N|)$ and time $(\tau_{ij} \rightarrow \tau_{ij}h^{1/\alpha_{ij}})$.
- c) Consider the payoff function for the scaled process, $V^h(t, \tilde{\mu_0})$.
- d) Let $|N| \to \infty$.

Result 2. (Fractional HJB type equation)

The evolution equation for the payoff function of a scaled process has been *heuristically* derived and it satisfies a Fractional Partial Differential Equation.

Motivation Background Methodology Summary	Step 1. Step 2. Step 3.	Modeling Controlled setting Optimization
--	-------------------------------	--

Fractional dynamic programming equation

Let $\hat{V}(t,x)$ be the value function associated with the limiting process of a scaled version of $Y^{\tilde{u}}$. Then, under appropriate assumptions, \hat{V} satisfies

$$A_{\alpha}^{*}\hat{V}(t,x) = -\hat{V}(0,x)\frac{t^{-\alpha}}{\Gamma(1-\alpha)} - \sum_{i,j=1;j\neq i}^{d} P[M^{X,u} = (i,j)] \left[\frac{\partial\hat{V}}{\partial x_{j}}(t,x) - \frac{\partial\hat{V}}{\partial x_{i}}(t,x)\right],$$
(2)

with initial data V(0,x) = H(x), where $\alpha = \alpha(x,t,u)$, $x \in \Sigma_d$, and

$$P[M^{X, u} = (i, j)] = \int_{0}^{\infty} \prod_{(k, l) \neq (i, j)} P[s \le \tau_{kl}(x_k / |N|, x_l / |N|, t, u)] \nu_{ij}(ds|x_i / |N|, x_j / |N|, t, u),$$
(3)

and A^*_{α} is the dual of the generator of an α -stable subordinator:

$$A_{\alpha}^{*}f(x) = -\frac{1}{\Gamma(-\alpha)}\int_{0}^{\infty}(f(x-s)-f(x))\frac{ds}{s^{1+\alpha}}, \quad \alpha \in (0,1).$$

Summary

The main steps for answering our questions and their implications.

Final comments

• Generalizations from discrete setting (**semi-Markov approach**) to continuous setting (**measure-valued approach**).

- Generalizations from discrete setting (**semi-Markov approach**) to continuous setting (**measure-valued approach**).
- Consider more general interactions and control frameworks.

- Generalizations from discrete setting (**semi-Markov approach**) to continuous setting (**measure-valued approach**).
- Consider more general interactions and control frameworks.

- Generalizations from discrete setting (**semi-Markov approach**) to continuous setting (**measure-valued approach**).
- Consider more general interactions and control frameworks.

Ongoing research: Proof of the weak convergence of the underlying stochastic processes.

Thank you for attention!

References

- Kolokoltsov, V. N. (2012) Nonlinear Markov Games on a Finite State Space (Mean-field and Binary Interactions), International Journal of Statistics and Probability, Vol. 1, No. 1.
- Kolokoltsov, V. and Veretennikova, M. (2012) Controlled Continuous Time Random Walks and Fractional Hamilton Jacobi Bellman Equations, arXiv:1203.6333 [math.OC].
- Kolokoltsov, V. and Veretennikova, M. (2013) *Control Fractional Dynamics*, preprint in preparation.

References

- Pyke, R. (1961) Markov renewal Processes: Definitions and Preliminary Properties. The Annals of Mathematical Statistics, Vol. 32, No. 4, pp. 1231-1242.
- Fleming, W. H. and Soner, H. M. (1993) *Controlled Markov Processes and Viscosity Solutions*, Springer-Verlag.
- Samorodnitsky, G. and Taqqu, M. (1994) *Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance*, Chapman & Hall (New York).
- Meerschaert, M.M., and Sikorskii, A. (2012) *Stochastic Models for Fractional Calculus*, De Gruyter Studies in Mathematics **43**.

Thank you for attention!

Definition

Let $f \in \mathcal{S}(\mathbb{R}^d)$, the operator

$$I_0^{\alpha}f(x) := \frac{1}{\Gamma(\alpha)} \int_0^x (x-s)^{\alpha-1} f(s) ds.$$
(4)

is called the left-sided Riemann-Liouvile fractional integral of order $\alpha > {\rm 0}.$

Definition

Let $f \in \mathcal{S}(\mathbb{R}^d)$, the operator

$$I_0^{\alpha}f(x) := \frac{1}{\Gamma(\alpha)} \int_0^x (x-s)^{\alpha-1} f(s) ds.$$
(4)

is called the left-sided Riemann-Liouvile fractional integral of order $\alpha > {\rm 0}.$

the Cauchy integral formula

- - - - - - -

$$I_0^n f(x) = \frac{1}{(n-1)!} \int_0^x (x-s)^{n-1} f(s) ds, \quad n > 0.$$
 (5)

Definition

Let $\alpha \in \mathbb{R}^+$ and $m = \lceil \alpha \rceil$. The operator D_0^{α} , defined by

$${}_{0}D_{x}{}^{\alpha}f(x) := D^{m}I_{0}^{m-\alpha}f(x), \quad \alpha > 0, \ \alpha \notin \mathbb{N},$$
(6)

is called the left-sided Riemann-Liouville fractional differential operator of order $\alpha > 0$.

Definition

Let $\alpha \in \mathbb{R}^+$ and $m = \lceil \alpha \rceil$. The operator D_0^{α} , defined by

$${}_{0}D_{x}{}^{\alpha}f(x) := D^{m}I_{0}^{m-\alpha}f(x), \quad \alpha > 0, \ \alpha \notin \mathbb{N},$$
(6)

is called the left-sided Riemann-Liouville fractional differential operator of order $\alpha > 0$.

- - - - - - - - - - - - -

 $D^m = D^{n-m}I^m, \quad n, m \in \mathbb{N}$