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General aim:
Understand stochastic processes in an “irregular” medium.
Asssume that the transition probabilities are still regular in a statistical
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1 Warm-up: simple random walk

2 The Random Conductance Model

3 Random walks on supercritical percolation clusters

4 Einstein relation for the Random Conductance Model

5 Einstein relation for symm. diffusions in random environment

6 Why it should be true: heuristics

7 Why it is true: strategy of the proof
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Warm-up: simple random walk

Take a simple random walk on the d-dimensional lattice.

It starts from the origin and moves, with equal probabilities, to the nearest
neighbours.
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Warm-up: simple random walk

Simple random walk is recurrent (it returns infinitely often to the origin) if
d ∈ {1, 2} and it is transient (it returns only finitely often to the origin) if
d ≥ 3.
It is well-known that the scaling limit of simple random walk is a Brownian
motion, a Gaussian process in continuous time on Rd . More precisely, the
law of (the linear interpolation of)

(Xm/
√

n)m=0,1,...,n

converges to the law of (σBt)0≤t≤1 where σ is a constant depending on
the dimension d . This convergence is “universal” and holds as well, for
instance, for triangular lattices.
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The Random Conductance Model

We define a random medium by giving i.i.d. weights - often called
“conductances” - to the bonds of the lattice.
The, run a random walk in this medium: The transition probabilities for a
point to its neighbours are proportional to the weights of the bonds.
Assume (first) that the weights are bounded and bounded away from zero.
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The Random Conductance Model

Question

Is this walk still recurrent for d = 2 and transient for d ≥ 3?

Answer: Yes! (This follows from a general “comparison” theorem,
Rayleigh’s Monotonicity Principle).

Question

Is the scaling limit of the random walk still σ times a Brownian motion?

Answer: Yes! (This was proved in in several papers by Martin Barlow,
Daniel Boivin, Luis Renato Fontes/Pierre Mathieu, S. M. Kozlov, Vladas
Sidoravicius/Alain-Sol Sznitman,... and extended to the case of bounded,
strictly positive conductances).
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The Random Conductance Model

Question

How does σ depend on the law of the conductances?

Note that this is important from the viewpoint of “material sciences”!
Analytical counterpart of this question, many papers but still open
questions. Recent results by Antoine Gloria, Jean-Christophe Mourrat,
Stefan Neukamm, Felix Otto.
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The Random Conductance Model

Question

Can the random medium be replaced by an “averaged” deterministic
medium?

Answer: It depends!
Two (contradicting!) paradigms:
“Intermittency” versus “Homogenisation”.
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Random walks on supercritical percolation clusters

To be more radical, consider bond percolation with parameter p on the
d-dimensional lattice: all bonds are open with probability p and closed
with probability 1− p, independently of each other. This corresponds to
conductances with values either 1 or 0. Look at pictures for d = 2:
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Random walks on supercritical percolation clusters

Bond percolation p= 0.25
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Random walks on supercritical percolation clusters

Bond percolation p= 0.49
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Random walks on supercritical percolation clusters

Bond percolation p= 0.51
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Random walks on supercritical percolation clusters

Bond percolation p= 0.75

13/39



Random walks on supercritical percolation clusters

For each p ∈ [0, 1], have a probability measure Pp on {0, 1}Zd
. Let C (0)

be the connected open component containing the origin. Let
θ(p) := Pp[C (0) is infinite].

Theorem

For each d ≥ 2, there is a critical value pc = pc(d) ∈ (0, 1) such that
θ(p) = 0 if p < pc and θ(p) > 0 if p > pc .
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Random walks on supercritical percolation clusters

Conjecture

θ(pc) = 0.

The conjecture has been proved for d = 2 and for d ≥ 19.
(For the case d = 2, see the book “Probability on Graphs” by Geoffrey
Grimmett.)
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Random walks on supercritical percolation clusters

Take bond percolation on Z2, d ≥ 2. Choose p > pc - this is called the
“supercritical régime”. Then, there is a unique infinite open cluster.
Condition on the event that the origin is in the infinite cluster.
Start a random walk in the infinite cluster which can only walk on open
bonds, and which goes with equal probabilities to all neighbours. (In
particular, this random walk never leaves the infinite cluster.)
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Random walks on supercritical percolation clusters

Question

Is this walk still recurrent for d = 2 and transient for d ≥ 3?

Answer: Yes! (The recurrence part follows again from Rayleigh’s
Monotonicity Principle, the transience was shown by Geoffrey Grimmett,
Harry Kesten and Yu Zhang).
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Random walks on supercritical percolation clusters

Question

Is the scaling limit of this random walk still σ times a Brownian motion?

Answer: Yes! (This was proved by Noam Berger/Marek Biskup, Pierre
Mathieu/Andrey Piatnitski, Vladas Sidoravicius/Alain-Sol Sznitman ).
Method of proof: decompose the walk in a martingale part and a
“corrector”. Show that the corrector can be neglected and apply the CLT
for martingales. The corrector is an interesting process, see
Jean-Christophe Mourrat/Felix Otto for recent results.
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Einstein relation for the Random Conductance Model

Consider again the Random Conductance Model:
Take i.i.d. conductances on the bonds of the d-dimensional lattice,
bounded above and bounded away from 0.
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Einstein relation for the Random Conductance Model

Known that there is a Central Limit Theorem (even an invariance
principle), many recent papers (Martin Barlow, Marek Biskup/Tim
Prescott, Luis RenatoFontes/Pierre Mathieu, Noam Berger/Marek
Biskup/Christopher Hoffman/Gady Kozma, Pierre Mathieu, Vladas
Sidoravicius/Alain-Sol Sznitman, ...).
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Einstein relation for the Random Conductance Model

We denote the covariance matrix by Σ.
Add a drift: take λ > 0 and multiply the conductances with powers of eλ.

c1

c2

c3

c4

c1

c3

c2e
λc4e

−λ
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Einstein relation for the Random Conductance Model

Theorem

(Lian Shen 2002)
For fixed drift, there is a law of large numbers:
For any λ > 0,

lim
n→∞

1

n
Xλ,ω(n) = v(λ), a.s.

where v(λ) is deterministic and v(λ) · e1 > 0.
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Einstein relation for the Random Conductance Model

Theorem

Einstein relation (N. G., Jan Nagel and Xiaoqin Guo, in progress)

lim
λ→0

v(λ)

λ
= Σe1 .

The theorem has been proved by Tomasz Komorowski and Stefano Olla
(2005) in the case where d ≥ 3 and the conductances only take two values.

Of course, it can be verified in the one-dimensional case and in the
deterministic case.
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Einstein relation for symm. diffusions in random environment

Consider diffusion Xω(t) in Rd with generator

Lωf (x) =
1

2
e2Vω(x) div(e−2Vωaω∇f )(x), (1)

where V ω is a real function and aω is symmetric matrix. V ω and aω are
realizations of a random environment, defined on some prob. space
(Ω,A,Q).
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Einstein relation for symm. diffusions in random environment

Assumptions:
(1) Translation invariance, ergodicity
(2) Smoothness: x → V ω(x) and x → aω(x) are smooth
(3) Uniform ellipticity: V ω is bounded and aω is uniformly elliptic, namely
there exists a constant κ such that, for all ω, x ∈ Rd and y ∈ Rd ,

κ|y |2 ≤ |aω(x)y |2 ≤ κ−1|y |2 .

(4) Finite range dependence.
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Einstein relation for symm. diffusions in random environment

Then, with σω =
√

aω and bω = 1
2divaω − aω∇V ω , Xω solves the

stochastic differential equation

dXω(t) = bω(Xω(t)) dt + σω(Xω(t))dWt (2)

where W is a Brownian motion.
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Einstein relation for symm. diffusions in random environment

Theorem

(George Papanicolaou, Srinivasa Varadhan, Hirofumi Osada, S. M. Kozlov
1980, 1982) The process Xω satisfies a Central Limit Theorem i.e.

1√
t
Xω(t) converges in law towards a Gaussian law. More precisely, the

rescaled process
Xω
ε (t) := εXω(t/ε2) , t ≥ 0 (3)

satisfies an invariance principle: there exists a non-negative (deterministic)
symmetric matrix Σ such that the law of (Xω

ε (t))t≥0 converges to the law
of (
√

Σ W (t))t≥0.

Both statements hold for almost any realization of the environment. Note
that Σ is in general not the average of aω.
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Einstein relation for symm. diffusions in random environment

Now, add a local drift in the equation satisfied by Xω: let ` ∈ Rd be a
vector, ` 6= 0, and take the equation

dXλ,ω(t) = bω(Xλ,ω(t))dt + σω(Xλ,ω(t))dWt + aω(Xλ,ω(t))λ`dt. (4)
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Einstein relation for symm. diffusions in random environment

Theorem

(Lian Shen 2003)
Assume Q has finite range of dependence and V ω is smooth and bounded.
Then the diffusion in random environment Xλ,ω satisfies the law of large
numbers: For any λ > 0,

lim
t→∞

1

t
Xλ,ω(t) = v(λ), a.s. (5)

where v(λ) is a deterministic vector and ` · v(λ) > 0.

v is called the effective drift.
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Einstein relation for symm. diffusions in random environment

Strategy of the proof (for fixed λ): Show that the process is transient in
direction `,

lim
t
` · Xλ, ω(t) = +∞ , a.s. (6)

Define regeneration times τ1, τ2, ... Show that Eλ0 [τ2 − τ1] <∞. Conclude
that

lim
t→∞

1

t
Xλ,ω(t) =

Eλ0
[
Xλ,ω(τ2)− Xλ,ω(τ1)

]
Eλ0 [τ2 − τ1]

a.s. (7)
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Einstein relation for symm. diffusions in random environment

Theorem

Einstein relation. (N.G., Pierre Mathieu, Andrey Piatnitski)
The effective diffusivity can be interpreted with the derivative of the
effective drift:

lim
λ→0

v(λ)

λ
= Σ` . (8)

In other words, the function λ→ v(λ) has a derivative at 0 and we have
for any vector e

lim
λ→0

1

λ
e · v(λ) = e · Σ`. (9)
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Why it should be true: heuristics

A key ingredient is Girsanov transform. For any t, the law of
(Xλ,ω(s))0≤s≤t is absolutely continuous w. r. t. the law of (Xω(s))0≤s≤t
and the Radon-Nikodym density is the exponential martingale

eλB
ω(t)−λ

2

2
〈Bω〉(t) (10)

where

Bω(t) =

t∫
0

`Tσω(Xω(s)) · dWs (11)

and

〈Bω〉(t) =

t∫
0

∣∣∣`Tσω(Xω(s))
∣∣∣2 ds (12)
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Why it should be true: heuristics

In particular,

Eλ0
[
Xλ,ω(t)

]
= E0

[
Xω(t)eλB

ω(t)−λ
2

2
〈Bω〉(t)

]
(13)

Hence
d

dλ
Eλ0
[
Xλ,ω(t)

]∣∣∣
λ=0

= E0 [Xω(t)Bω(t)] (14)

and

lim
t→∞

1

t

d

dλ
Eλ0
[
Xλ,ω(t)

]∣∣∣
λ=0

= lim
t→∞

1

t
E0 [Xω(t)Bω(t)] (15)
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Why it should be true: heuristics

Exchanging the order of the limits yields

d

dλ
v(λ)|λ=0 = lim

t→∞

1

t
E0 [Xω(t)Bω(t)] (16)

A symmetry argument (using the reversibility) shows that

E0 [Xω(t)Bω(t)] = E0 [Xω(t)(` · Xω(t))] (17)

and we conclude that

d

dλ
v(λ)|λ=0 = lim

t→∞

1

t
E0 [Xω(t)(` · Xω(t))] = Σ` (18)
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Why it is true: strategy of the proof

In fact, Joel Lebowitz and Hermann Rost showed, using the invariance
principle and Girsanov transform:

Theorem

(Joel Lebowitz, Hermann Rost, 1994)
Let α > 0. Then

lim
λ→0 ,t→+∞ ,λ2t=α

Eλ0
[

Xλ,ω(t)

λt

]
= Σ ` . (19)
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Why it is true: strategy of the proof

Idea: work on the scale λ→ 0, t →∞, λ2t → α and eventually α→∞.
We show that

Proposition

lim
α→+∞

lim sup
λ→0 ,t→+∞ ,λ2t=α

∣∣∣∣Eλ0 [Xλ,ω(t)

λt

]
− v(λ)

λ

∣∣∣∣ = 0. (20)
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Why it is true: strategy of the proof

Recall that

lim
λ→0,t→+∞,λ2t=α

Eλ0
[

Xλ,ω(t)

λt

]
= Σ ` . (21)

In order to show the proposition, follow Lian Shen’s construction of
regeneration times, but take into account the dependence on λ. To carry
this through, need uniform estimates for hitting times (on our scale).
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Why it is true: strategy of the proof

The Einstein relation is conjectured to hold for many models, but it is
proved for few. Examples include:
–Balanced random walks in random environment (Xiaoqin Guo).
–Random walks on Galton-Watson trees (Gérard Ben Arous, Yueyun Hu,
Stefano Olla, Ofer Zeitouni).
–Tagged particle in asymmetric exclusion (Michail Loulakis).
–Random walks on one-dimensional percolation clusters (N.G., Matthias
Meiners, Sebastian Müller, in progress).
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Why it is true: strategy of the proof

Open questions: plenty!
But instead:

Thanks for your attention!
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