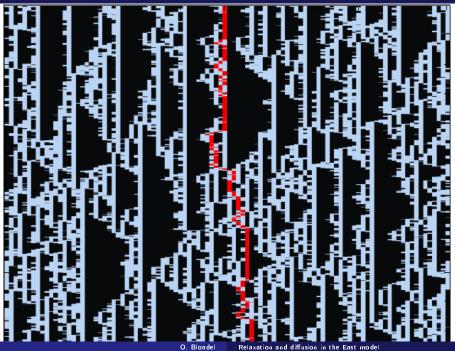
Relaxation and diffusion in the East model

Oriane Blondel LPMA – Paris 7; ENS Paris

Young Women in Probability – Bonn May 27th, 2014

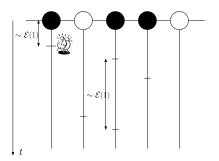


The East model

▶ Markov process on $\{0,1\}^{\mathbb{Z}^d}$ with dynamics of creation/destruction of particles (introduced in physics to model glassy systems).

The East model

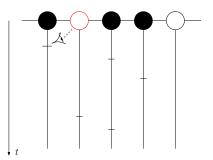
▶ Markov process on $\{0,1\}^{\mathbb{Z}^d}$ with dynamics of creation/destruction of particles (introduced in physics to model glassy systems).



- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.

The East model

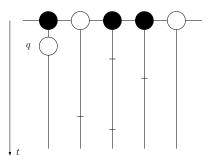
• Markov process on $\{0,1\}^{\mathbb{Z}^d}$ with dynamics of creation/destruction of particles (introduced in physics to model glassy systems).



- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.

The East model

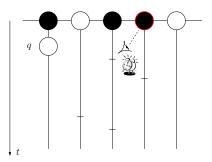
▶ Markov process on $\{0,1\}^{\mathbb{Z}^d}$ with dynamics of creation/destruction of particles (introduced in physics to model glassy systems).



- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.

The East model

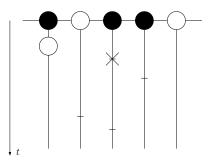
▶ Markov process on $\{0,1\}^{\mathbb{Z}^d}$ with dynamics of creation/destruction of particles (introduced in physics to model glassy systems).



- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

The East model

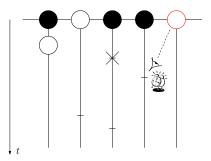
• Markov process on $\{0,1\}^{\mathbb{Z}^d}$ with dynamics of creation/destruction of particles (introduced in physics to model glassy systems).



- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

The East model

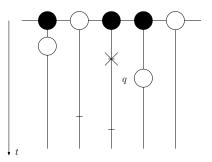
• Markov process on $\{0,1\}^{\mathbb{Z}^d}$ with dynamics of creation/destruction of particles (introduced in physics to model glassy systems).



- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

The East model

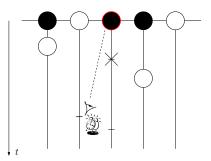
• Markov process on $\{0,1\}^{\mathbb{Z}^d}$ with dynamics of creation/destruction of particles (introduced in physics to model glassy systems).



- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

The East model

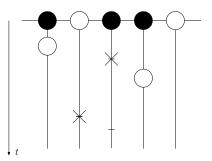
▶ Markov process on $\{0,1\}^{\mathbb{Z}^d}$ with dynamics of creation/destruction of particles (introduced in physics to model glassy systems).



- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

The East model

• Markov process on $\{0,1\}^{\mathbb{Z}^d}$ with dynamics of creation/destruction of particles (introduced in physics to model glassy systems).



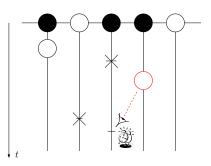
- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

The East model

▶ Markov process on $\{0,1\}^{\mathbb{Z}^d}$ with dynamics of creation/destruction of particles (introduced in physics to model glassy systems).

p ∈ (0,1) density parameter. q := 1 − p (q small ↔ low temperature).
 Constraint: the system can add/remove a particle at x only if the East

neighbour (*i.e.* x + 1 is empty).



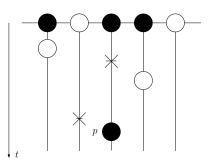
- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

The East model

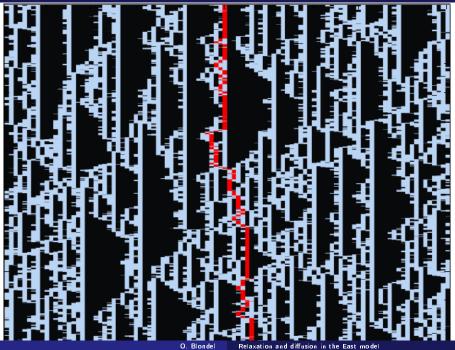
▶ Markov process on $\{0,1\}^{\mathbb{Z}^d}$ with dynamics of creation/destruction of particles (introduced in physics to model glassy systems).

p ∈ (0,1) density parameter. q := 1 − p (q small ↔ low temperature).
 Constraint: the system can add/remove a particle at x only if the East

neighbour (*i.e.* x + 1 is empty).



- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.



Equilibrium and relaxation time

• Let
$$P_t f(\omega) = \mathbb{E}_{\omega} [f(\omega(t))].$$

Equilibrium and relaxation time

Let P_tf(ω) = E_ω [f(ω(t))].
 Let μ = B(p)^{⊗ℤ} the product Bernoulli measure with density p on {0,1}^ℤ. μ is reversible for the East dynamics ⇒ equilibrium measure.
 In particular, μ(P_tf) = μ(f).

Equilibrium and relaxation time

Let P_tf(ω) = E_ω [f(ω(t))].
 Let μ = B(p)^{⊗Z} the product Bernoulli measure with density p on {0,1}^Z. μ is reversible for the East dynamics ⇒ equilibrium measure.
 In particular, μ(P_tf) = μ(f).

Exponential decay of correlations at equilibrium [Aldous-Diaconis '02]

$${\it Var}_{\mu}({\it P}_t f) \leq {\it Var}_{\mu}(f) e^{-2t/ au}$$
 avec $au < \infty,$

or

$$|\mu(f \cdot P_tg) - \mu(f)\mu(g)| \leq C_{f,g}e^{-t/\tau}.$$

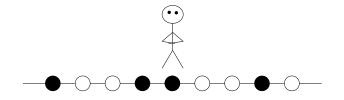
"The correlation between ω and $\omega(t)$ decays as $e^{-t/\tau}$ when starting from equilibrium". τ is the *relaxation time* of the dynamics.

 $\mathsf{N}.\mathsf{B}: \tau = \tau(q).$

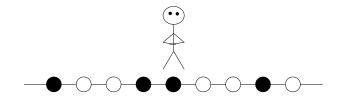
East model Probing the bubble landscape

O. Blondel Relaxation and diffusion in the East model

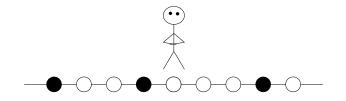
- Environment: equilibrium East dynamics (initial configuration $\sim \mu$).
- Add a tracer (or probe particle) at the origin.



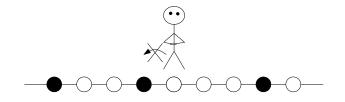
- Environment: equilibrium East dynamics (initial configuration $\sim \mu$).
- Add a tracer (or probe particle) at the origin.
- It moves as a random walk, but is only allowed to jump from one empty site to another.



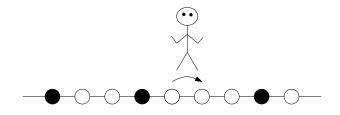
- Environment: equilibrium East dynamics (initial configuration $\sim \mu$).
- Add a tracer (or probe particle) at the origin.
- It moves as a random walk, but is only allowed to jump from one empty site to another.



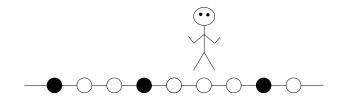
- Environment: equilibrium East dynamics (initial configuration $\sim \mu$).
- Add a tracer (or probe particle) at the origin.
- It moves as a random walk, but is only allowed to jump from one empty site to another.



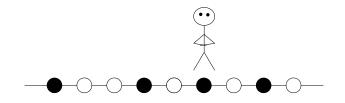
- Environment: equilibrium East dynamics (initial configuration $\sim \mu$).
- Add a tracer (or probe particle) at the origin.
- It moves as a random walk, but is only allowed to jump from one empty site to another.



- Environment: equilibrium East dynamics (initial configuration $\sim \mu$).
- Add a tracer (or probe particle) at the origin.
- It moves as a random walk, but is only allowed to jump from one empty site to another.



- Environment: equilibrium East dynamics (initial configuration $\sim \mu$).
- Add a tracer (or probe particle) at the origin.
- It moves as a random walk, but is only allowed to jump from one empty site to another.



East model Probing the bubble landscape

O. Blondel Relaxation and diffusion in the East model

Diffusion coefficient

Under diffusive scaling, the tracer trajectory converges to a Brownian motion. X_t : position of the tracer at time t.

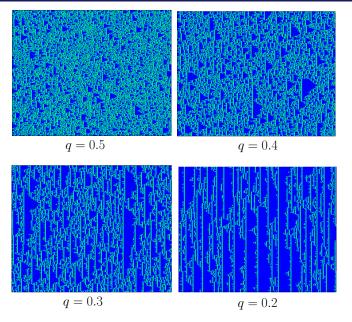
$$\epsilon X_{\epsilon^{-2}t} \underset{\epsilon \to 0}{\longrightarrow} \sqrt{2D}B_t,$$

where $(B_t)_{t\geq 0}$ is a standard Brownian motion.

NB:

 \blacktriangleright Interaction with the environment encoded in the *diffusion coefficient* D.

 $\blacktriangleright D = D(q).$



Simulations by Arturo L. Zamorategui.

Asymptotics for au(q) and D(q), q ightarrow 0

• [Jung-Garrahan-Chandler '04] Simulations suggest that $D \approx \tau^{-0.73}$.

Asymptotics for au(q) and D(q), q ightarrow 0

- [Jung-Garrahan-Chandler '04] Simulations suggest that $D \approx \tau^{-0.73}$.
- ▶ We know that [AD '02, CMRT'08]

 $au pprox (1/q)^{\log(1/q)/(2\log 2)}.$

Asymptotics for au(q) and $D(q), \ q ightarrow 0$

- [Jung-Garrahan-Chandler '04] Simulations suggest that $D \approx \tau^{-0.73}$.
- We know that [AD '02, CMRT'08]

$$au pprox (1/q)^{\log(1/q)/(2\log 2)}.$$

► Theorem [B. '13] There exist C, α < ∞ not depending on q such that</p>

$$cq^2\tau^{-1} \leq D \leq Cq^{-\alpha}\tau^{-1}.$$

In particular, $\log D / \log \tau \rightarrow -1$.

Asymptotics for au(q) and D(q), q ightarrow 0

- [Jung-Garrahan-Chandler '04] Simulations suggest that $D \approx \tau^{-0.73}$.
- We know that [AD '02, CMRT'08]

$$au pprox (1/q)^{\log(1/q)/(2\log 2)}.$$

► Theorem [B. '13] There exist C, α < ∞ not depending on q such that</p>

$$cq^2\tau^{-1} \leq D \leq Cq^{-\alpha}\tau^{-1}.$$

In particular, $\log D / \log \tau \rightarrow -1$.

► [Jung-Kim-Garrahan-Chandler '13] New extended simulations, compatible with either $D \approx \tau^{-0.77}$ or $D \approx q^{-1.6} \tau^{-1}$.

Heuristic for au

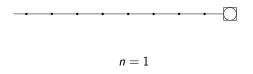
Combinatorial game [Chung-Diaconis-Graham '01].

- Board: \mathbb{Z}^- with fixed zero at the origin.
- ► Game tokens: *n* zeros.
- Rule: zeros can be added to or removed from the board (except the fixed initial one), as long as the East constraint is respected (*i.e.* if there is a zero to the right.
- Goal of the game: bring a zero as far left as possible.

Heuristic for au

Combinatorial game [Chung-Diaconis-Graham '01].

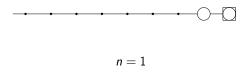
- Board: \mathbb{Z}^- with fixed zero at the origin.
- ▶ Game tokens: *n* zeros.
- Rule: zeros can be added to or removed from the board (except the fixed initial one), as long as the East constraint is respected (*i.e.* if there is a zero to the right.
- Goal of the game: bring a zero as far left as possible.



Heuristic for au

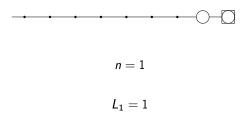
Combinatorial game [Chung-Diaconis-Graham '01].

- Board: \mathbb{Z}^- with fixed zero at the origin.
- ▶ Game tokens: *n* zeros.
- Rule: zeros can be added to or removed from the board (except the fixed initial one), as long as the East constraint is respected (*i.e.* if there is a zero to the right.
- Goal of the game: bring a zero as far left as possible.



Combinatorial game [Chung-Diaconis-Graham '01].

- Board: \mathbb{Z}^- with fixed zero at the origin.
- ▶ Game tokens: *n* zeros.
- Rule: zeros can be added to or removed from the board (except the fixed initial one), as long as the East constraint is respected (*i.e.* if there is a zero to the right.
- Goal of the game: bring a zero as far left as possible.



Combinatorial game [Chung-Diaconis-Graham '01].

- Board: \mathbb{Z}^- with fixed zero at the origin.
- ▶ Game tokens: *n* zeros.
- Rule: zeros can be added to or removed from the board (except the fixed initial one), as long as the East constraint is respected (*i.e.* if there is a zero to the right.
- Goal of the game: bring a zero as far left as possible.

$$L_1 = 1$$
 ; $L_2 = ?$

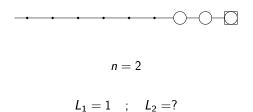
Combinatorial game [Chung-Diaconis-Graham '01].

- Board: \mathbb{Z}^- with fixed zero at the origin.
- ▶ Game tokens: *n* zeros.
- Rule: zeros can be added to or removed from the board (except the fixed initial one), as long as the East constraint is respected (*i.e.* if there is a zero to the right.
- Goal of the game: bring a zero as far left as possible.

$$L_1 = 1$$
 ; $L_2 = ?$

Combinatorial game [Chung-Diaconis-Graham '01].

- Board: \mathbb{Z}^- with fixed zero at the origin.
- ► Game tokens: *n* zeros.
- Rule: zeros can be added to or removed from the board (except the fixed initial one), as long as the East constraint is respected (*i.e.* if there is a zero to the right.
- Goal of the game: bring a zero as far left as possible.



Combinatorial game [Chung-Diaconis-Graham '01].

- Board: \mathbb{Z}^- with fixed zero at the origin.
- ▶ Game tokens: *n* zeros.
- Rule: zeros can be added to or removed from the board (except the fixed initial one), as long as the East constraint is respected (*i.e.* if there is a zero to the right.
- Goal of the game: bring a zero as far left as possible.

$$L_1 = 1$$
 ; $L_2 = ?$

Combinatorial game [Chung-Diaconis-Graham '01].

- Board: \mathbb{Z}^- with fixed zero at the origin.
- ▶ Game tokens: *n* zeros.
- Rule: zeros can be added to or removed from the board (except the fixed initial one), as long as the East constraint is respected (*i.e.* if there is a zero to the right.
- Goal of the game: bring a zero as far left as possible.

$$L_1 = 1$$
 ; $L_2 = 3$

Combinatorial game [Chung-Diaconis-Graham '01].

- Board: \mathbb{Z}^- with fixed zero at the origin.
- ▶ Game tokens: *n* zeros.
- Rule: zeros can be added to or removed from the board (except the fixed initial one), as long as the East constraint is respected (*i.e.* if there is a zero to the right.
- Goal of the game: bring a zero as far left as possible.

$$L_1 = 1$$
 ; $L_2 = 3$; $L_3 = ?$

Combinatorial game [Chung-Diaconis-Graham '01].

- Board: \mathbb{Z}^- with fixed zero at the origin.
- ► Game tokens: *n* zeros.
- Rule: zeros can be added to or removed from the board (except the fixed initial one), as long as the East constraint is respected (*i.e.* if there is a zero to the right.
- Goal of the game: bring a zero as far left as possible.

$$L_1 = 1$$
 ; $L_2 = 3$; $L_3 = 7$ homework!

Combinatorial game [Chung-Diaconis-Graham '01].

- Board: \mathbb{Z}^- with fixed zero at the origin.
- ► Game tokens: *n* zeros.
- Rule: zeros can be added to or removed from the board (except the fixed initial one), as long as the East constraint is respected (*i.e.* if there is a zero to the right.
- ► Goal of the game: bring a zero as far left as possible.

Results:

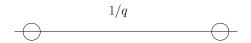
$$L_n=2^n-1.$$

In particular, we need $\approx \log_2 L$ zeros to cross a distance L.

• Number of configurations attainable with *n* zeros $\approx 2^{\binom{n}{2}} n! c^n$.

$$au pprox (1/q)^{\log(1/q)/(2\log 2)}, \quad q o 0.$$

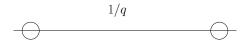
- Under μ , typical configuration \rightarrow isolated zeros at distance 1/q.
- Consequence of the previous game: to cross a distance 1/q, we need log₂(1/q) zeros.



Tracer

$$au pprox (1/q)^{\log(1/q)/(2\log 2)}, \quad q o 0.$$

- Under μ , typical configuration \rightarrow isolated zeros at distance 1/q.
- Consequence of the previous game: to cross a distance 1/q, we need log₂(1/q) zeros.
- Under μ the probability of a given configuration with $n = \log_2(1/q)$ zeros is $\approx q^{\log_2(1/q)}$.



$$au pprox (1/q)^{\log(1/q)/(2\log 2)}, \quad q
ightarrow 0.$$

- Under μ , typical configuration \rightarrow isolated zeros at distance 1/q.
- Consequence of the previous game: to cross a distance 1/q, we need log₂(1/q) zeros.
- Under μ the probability of a given configuration with $n = \log_2(1/q)$ zeros is $\approx q^{\log_2(1/q)}$.

• The time it takes to cross 1/q is

$$au pprox (1/q)^{\log(1/q)/(2\log 2)}, \quad q
ightarrow 0.$$

- Under μ , typical configuration \rightarrow isolated zeros at distance 1/q.
- Consequence of the previous game: to cross a distance 1/q, we need log₂(1/q) zeros.
- Under μ the probability of a given configuration with $n = \log_2(1/q)$ zeros is $\approx q^{\log_2(1/q)}$.
- ► The results of the game further say that there are $\approx 2^{\binom{n}{2}} \approx (1/q)^{\log(1/q)/(2\log 2)}$ such attainable configurations.
- The time it takes to cross 1/q is

$$\approx \left[q^{\log_2(1/q)}\right]^{-1}$$

$$\frac{1/q}{\bigcirc}$$

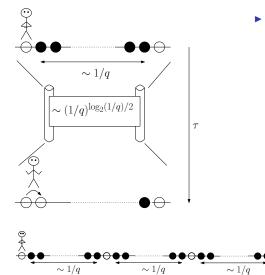
Tracer

$$au pprox (1/q)^{\log(1/q)/(2\log 2)}, \quad q
ightarrow 0.$$

- Under μ , typical configuration \rightarrow isolated zeros at distance 1/q.
- Consequence of the previous game: to cross a distance 1/q, we need log₂(1/q) zeros.
- Under μ the probability of a given configuration with $n = \log_2(1/q)$ zeros is $\approx q^{\log_2(1/q)}$.
- ► The results of the game further say that there are $\approx 2^{\binom{n}{2}} \approx (1/q)^{\log(1/q)/(2\log 2)}$ such attainable configurations.
- The time it takes to cross 1/q is

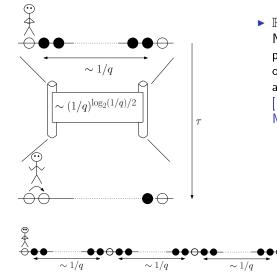
$$\approx \left[q^{\log_2(1/q)}(1/q)^{\log(1/q)/(2\log 2)}\right]^{-1} = (1/q)^{\log(1/q)/(2\log 2)}$$

$$\frac{1/q}{\bigcirc}$$

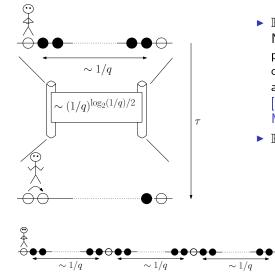


•
$$\mathbb{P}_{\mu}(X \mid_{\tau} \geq 1/q) \ll 1$$

ю

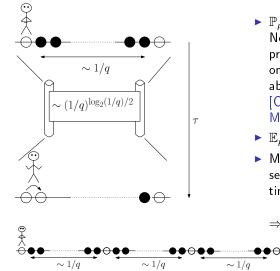


▶ P_µ(X_{q^βτ} ≥ 1/q) ≤ Cq Note: we need more precise estimates than the ones given by the game above; better bottleneck in [Chleboun-Faggionato-Martinelli '14].



▶ P_µ(X_{q^βτ} ≥ 1/q) ≤ Cq Note: we need more precise estimates than the ones given by the game above; better bottleneck in [Chleboun-Faggionato-Martinelli '14].

•
$$\mathbb{E}_{\mu}[X^2_{q^{\beta}\tau}] \leq Cq^{-C}$$



▶ P_µ(X_{q^βτ} ≥ 1/q) ≤ Cq Note: we need more precise estimates than the ones given by the game above; better bottleneck in [Chleboun-Faggionato-Martinelli '14].

•
$$\mathbb{E}_{\mu}[X^2_{q^{\beta}\tau}] \leq Cq^{-C}$$

 Mixing of the environment seen from the tracer on time scale τ

$$\Rightarrow \limsup_{t \to +\infty} \frac{1}{t} \mathbb{E}_{\mu}[X_t^2] \le Cq^{-\alpha}\tau^{-1}$$

Bibliography

East model

- O. Blondel, Tracer diffusion at low temperature in kinetically constrained models, to appear in Annals of Applied Probability (2014).
- O. Blondel, C. Toninelli, Is there a breakdown of the Stokes-Einstein relation in Kinetically Constrained Models at low temperature?, submitted (2013).
- P. Chleboun, A. Faggionato, F. Martinelli, Time scale separation and dynamic heterogeneity in the low temperature East model, Comm. Math. Phys. (2014).
- F. Chung, P. Diaconis, R. Graham, *Combinatorics for the East model*, Adv. in Appl. Math. 27, no. 1, 192–206 (2001).
- Y. Jung, J. P. Garrahan, D. Chandler, *Excitation lines and the breakdown of Stokes-Einstein relations in supercooled liquids*, Phys. Rev. E, vol. 69, 061205 (2004).

Thank you for your attention!