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Galton-Watson process
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Galton-Watson process with neutral mutations

The population has infinitely many alleles.
The offspring distribution is ξ(+) := ξ(c) + ξ(m).
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Galton-Watson process with neutral mutations

Notation

Tn the total population of individuals of the n-th type.
Mn the total number of mutants of n-th type.
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An example
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Basic definitions

Line is a family of edges such that every branch from the root contains at most one edge
in that family.
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Stopping line is a random line such that for every edge in the tree, the event that this
edge is part of the line only depends on the marks found on the path from the root to
that edge.
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The general branching property

”Conditionally on the set of children of a stopping line, the families that those beget are
independent copies of the initial tree”.

Lemma (Bertoin [3])

Under Pa

{Mn : n ∈ Z}

is a Galton-Watson process with reproduction law P1(M1 ∈ ·). More generally,

{(Tn,Mn+1) : n ∈ Z}

is a Markov chain, with transition probabilities

Pa(Tn = k,Mn+1 = l | Tn−1 = i ,Mn = j) = Pj(T0 = k,M1 = l).
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Tree of alleles
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The tree of alleles is a process A = (Au : u ∈ U) indexed on

U :=
⋃

k∈Z+

Nk ,

where N = {1, 2, ...} and N0 = {∅}.
Construction

A∅ = T0,

Auj = The size of the j-th allelic sub-population of the type |u|+ 1 which descend
from the allelic sub-family indexed by the vertex u, where | · | denotes the level of
the vertex.
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Tree of alleles: properties

Remark

Tk =
∑
|u|=k

Au and Mk+1 =
∑
|u|=k

du,

where du := max{j ≥ 1 : Auj > 0} agreeing that max∅ = 0.
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Lemma (Bertoin [3])

For every integer a ≥ 1 and k ≥ 0, the tree of alleles fulfills the following properties under
Pa conditionally on ((Au, du) : |u| ≤ k)

i) ((Auj , duj) : 1 ≤ j ≤ du), u vertex at level k such that Au > 0, are independent,

ii) for each vertex u at level k with Au > 0, the du-tuple ((Auj , duj) : 1 ≤ j ≤ du) is
distributed as (T0,M1)(du↓) under P1.

The notation (du ↓) means that we rearranged the du-tuple in the decreasing order of the
first coordinate, with the convention that in the case of ties, the coordinates are ranked
uniformly at random.
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Assumptions

T = inf{n ≥ 1 : Mn = 0} <∞, Pa-c.s.

P(M1 = 1) > 0,

P(M1 = 0) + P(M1 = 1) < 1,

P(M1 = j) 6= 1, for any j .

Generating function

ϕn(x , y) := E1(xTn−1 yMn ), x , y ∈ [0, 1].

fn(y) := ϕn(1, y), y ∈ [0, 1].

Remark

ϕn(x , y) = fn−1(ϕ(x , y)), x , y ∈ [0, 1],

∞∑
k,l=0

Pn
(i,j),(k,l)x

ky l = (ϕn(x , y))j , i , j ≥ 1.
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Theorem

Let a ∈ Z+ and Fn the natural filtration of the process {(Tn−1,Mn) : n ∈ N}. There exits
a probability measure P↑a that can be expressed as a h-transform of Pa using the
(Fn)-martingale

Yn =
MnqMn−a

(f ′(q))n
.

where f (y) = E1(yM1 ) and q denotes the extinction probability of {Mn : n ∈ Z}. That is

dP↑a |Fn =
Yn

a
dPa|Fn , n ∈ N.

Furthermore, P↑a is the law of a Markov chain {(T ↑n ,M
↑
n+1), n ∈ Z+} with n-step

transition probabilities,

Qn
(i,j),(k,l) =

lql−j

j(f ′(q))n
Pn

(i,j),(k,l), j , l ≥ 1,

where {Pn
(i,j),(k,l) : i , j , k, l ∈ Z+} denotes the n-step transition probabilities of

{(Tn,Mn+1), n ∈ Z+}.
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Theorem

Suppose that E(ξ(+)) ≤ 1.

i) The Yaglom limit
lim

n→∞
P(Tn−1 = i ,Mn = j | n < T <∞)

exists and has a generating function ϕ̂(x , y) such that for all n ∈ N,

mnϕ̂(x , y) = f̂ (ϕn(x , y))− f̂ (ϕn(x , 0)), x , y ∈ [0, 1].

ii) Let a ∈ Z+ and n fixed. The conditional laws of the process
{(Tk ,Mk+1) : 0 ≤ k ≤ n − 1} under Pa(· |n + k < T <∞) converge to the k →∞
to a limit probability measure P↑a , i.e. for any n ≥ 0

lim
k→∞

Pa(A| n + k < T <∞) = P↑a (A), ∀A ∈ Fn.
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Proposition

The generating function of the n-step transition probabilities for the process

{(T ↑n ,M
↑
n+1), n ∈ Z+}

is given by

∞∑
k,l=1

Qn
(i,j),(k,l)x

ky l =
yq1−j

[f ′(q)]n
[ϕn(x , qy)]j−1 ∂

∂y
ϕ(x , qy)

n−1∏
i=1

f ′(ϕi (x , qy)).

Corollary

If {Mn, n ∈ Z+} is critical or subcritical, then {M↑n − 1, n ∈ Z+} is a Galton-Watson

process with immigration [f , f ′

m
].
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For every n ∈ N, let {Z (n)
k : k ∈ Z+} a Galton Watson process such that

Z
(n)
0 = a(n) ancestors.

Reproduction law

π+
k = P(ξ(+) = k), k ∈ Z+.

is critical and
π̄+(j) := P(ξ(+) > j) ∈ RV−α∞ , α ∈ (1, 2), (1)

where RV−α∞ denotes the class of functions which are regularly varying with index −α
at ∞.

Mutations affect each child according to a fixed probability p(n) ∈ (0, 1) and
independently of the other children.
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Proposition

If condition (1) holds, then there exists r(n) ∈ RV−α∞ such that

r(n)π+(ndy) −−−→
n→∞

cα
dy

y 1+α
,

where cα is a constant that depends on α. In particular

exp

{
−t

∫
[0,∞)

(1− e−λy − λy)r(n)π+(ndy)

}
−−−→
n→∞

e−tλα

.
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For every n ∈ N, let {Y (n)
k : k ∈ Z+} a Galton Watson process with

Y
(n)

0 = b(n) ancestors.

Reproduction law ρ(n).

Assume that
lim

n→∞
n−1b(n) = x and lim

n→∞
nρ̄(n)(ny) = ν̄(y), (2)

where ν is a measure on (0,∞) such that
∫

(1 ∧ y)ν(dy) <∞. Then

n−1Y
(n)

1 =⇒ Y1,

with Y1 an infinitely divisible random variable on [0,∞).
More generally, an application of the Markov property shows:

{n−1Y
(n)
k : k ∈ Z+} =⇒ {Yk : k ∈ Z+},

where {Yk : k ∈ Z+} is a (discrete time) continuous state branching process, in short,
CSBP, with reproduction measure ν and started from x .
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Thanks to the Lévy Itô decomposition,

Y1 =
∞∑
i=1

bi

where b1 ≥ b2 ≥ · · · are the atoms ranked in decreasing order of a Poisson random
measure on (0,∞) with intensity xν, with the convention that atoms are repeated
according to their multiplicity.

Define

{ξ(n)
i : 1 ≤ i ≤ b(n)} i.i.d. variables with law ρ(n).

{b(n)
i : 1 ≤ i ≤ b(n)} the decreasing reordering of the rescaled variables

{n−1ξ
(n)
i : 1 ≤ i ≤ a(n)}.

Assuming (2), the application of convergence Theorem of superpositions (Theorem 14.18
in [4]) implies

(b
(n)
1 , b

(n)
2 , ..., b

(n)
b(n)) =⇒ (b1, b2, ...).

in the sense of finite dimensional distributions.
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Definition (Bertoin [3])

Fix x > 0 and ν a measure on (0,∞) with
∫

(1 ∧ y)ν(dy) <∞. A tree-indexed CSBP
with reproduction measure ν and initial population size x is a process {Zu : u ∈ U} with
values in R+ whose distribution is characterized by induction on the levels as follows:

i) Z∅ = x , a.s.;

ii) for every k ∈ Z+, conditionally on {Zv : v ∈ U, |v | ≤ k}, the sequences
{Zuj : j ∈ N} for the vertices u ∈ U at generation |u| = k are independent, and each
sequence {Zuj : j ∈ N} is distributed as the family of the atoms of a Poisson random
measure on (0,∞) with intensity Zuν, where the atoms are repeated according to
their multiplicity, ranked in the decreasing order, and completed by an infinite
sequence of 0 if the Poisson measure is finite.
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Theorem

Assuming (1),
a(n) ∼ nx , and p(n) ∼ cn−1, as n→∞. (3)

Also,
r(n)p(n) ∼ n, as n→∞. (4)

The rescaled tree of alleles (r(n))−1A(n) converges in the sense of finite dimensional

distributions towards a process {Z1/α
u : u ∈ U} called tree-indexed CSBP with

reproduction measure

να(dx) = cαx−1−1/αdx , x > 0, α ∈ (1, 2).

More precisely, we have the join convergence in the sense of finite dimensional
distributions

L
(

(((r(n))−1Au, (r(n)p(n))−1du) : k ∈ U),Pp(n)
a(n)

)
=⇒ ((Z1/α

u ,Z1/α
u ) : u ∈ U).
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