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Galton-Watson process

{Z (n)}n∈N, with Z (n) ∈ N.

Definition

Let {Zn}n∈N be a Markov chain s.t.{
Z0 > 0
Zn =

∑Zn−1
i=1 ξ

(n)
i per n = 1, 2, . . .

(1)

and ξ(n)
i are i.i.d. random variables in N.

Branching property

Let {Zn}n∈N, {Z (1)
n }n∈N and {Z (2)

n }n∈N be three Galton-Watson processes
indipendent with the same offspring distribution in formula (1). If Z0 = x + y ,
Z (1)

0 = x and Z (2)
0 = y , then ∀ n > 0

Zn
d
= Z (1)

n + Z (2)
n . (2)
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Continuous-state Branching Process and Limit theorem

{X (t)}t∈R+ , with X (t) ∈ R+.

Branching property

For each initial condition x , y ∈ R+, then for any fixed t ≥ 0, the markov
transition kernels satisfy

Pt (x + y , ·) = Pt (x , ·) ∗ Pt (y , ·)

Theorem (Aliev, Shurenkov (1982))

Let {X (t)}t≥0 be a CSBP, then there exists a sequence of GW processes
{Z (k)(n)}n≥0 for k ≥ 0 such that{

Z (k)(bγk tc)
k

}
t≥0

=⇒ {X (t)}t≥0 for k → ∞, (3)

where Z (k)(0)
k −→ X (0); γk is a sequence of positive reals tending to infinity

and =⇒ means weak convergence in Skorhokod space D([0,∞),R+).
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How can we provide a GW process with memory?

We set random waiting times between successive generations of each
Galton-Watson process {Z (n)}n∈N.

Let J1, J2, . . . be i.i.d. random waiting times, then we define the processes

{T (n)}n≥0 t.c.
{

T (0) = 0;
T (n) =

∑n
i=1 Ji .

(4)

N(t) = sup{n ≥ 0 : T (n) ≤ t}. (5)

The main idea is to consider the modified process

{Z (N(t))}t∈R+ .
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Infinite mean waiting times

Let J1, J2, . . . be waiting times belonging to DOA(D), with D stable r.v. with
index β ∈ (0, 1). There exists a sequence b(n) s.t.

b(n)T (n)
d−→ D (6)

and
{b(n)T (bntc)}t≥0 =⇒ {D(t)}t≥0

where D(t) is a stable subordinator with index β.

Theorem (Becker-Kern, Meerschaert, Scheffler (2004))

There exists a sequence b̃(n) s.t.{
1

b̃(n)
N(bntc)

}
t≥0

=⇒ {E(t)}t≥0 (7)

in D([0,∞),R+), where {E(t)}t≥0 is the inverse subordinator defined as

E(t) = inf {x , D(x) > t} . (8)
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Limit in the product space

For the GW process we have{
Z (k)(bγk tc)

k

}
t≥0

=⇒ {X (t)}t≥0 per k →∞ (9)

and for the waiting times we have{
1

b̃(k)
N(bktc)

}
t≥0

=⇒ {E(t)}t≥0 per k →∞. (10)

Theorem

Let {Z (k)(n)}n∈N a sequence of GW s.t. limit (9) holds, let J1, J2, . . . i.i.d.
waiting times belonging to the DOA of a stable law, such that limit (10) holds,
then (

Z (k)(bb̃k tc)
k

,
N(bktc)

b̃k

)
=⇒ (X (t),E(t)) (11)

in the product space D([0,∞),R+)× D([0,∞),R+).
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Composition map

Composition map

C : D([0,∞),R+)× D([0,∞),R+) → D([0,∞),R+)

(x , y) → x(y)

is continuous when applied to this processes.

Theorem

Under previous hypothesis, the convergence of the rescaled compound
process holds {

Z (k) (N(bktc))

k

}
t≥0

=⇒ {X (E(t))}t≥0

for k →∞, in D([0,∞),R+).
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Branching property

The CSBP with memory {X (E(t))}t≥0 does not satisfy the classical
branching property, however it holds a modified version with the conditional
expectation:

E
[
Ex+y

[
e−λX(E(t))

∣∣∣E(t)
]]

= E
[
Ex

[
e−λX(E(t))

∣∣∣E(t)
]
Ey

[
e−λX(E(t))

∣∣∣E(t)
]]
,

for all x , y > 0 and all λ > 0
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First and second moments of CSBP with memory

Theorem

The first and the second moments of the process {X (E(t))}t≥0, when they
exist, have explicit form

Ex [X (E(t))] = xEβ(−btβ),

Ex
[
X (E(t))2] =


x2 + x β̃ Γ(2)

Γ(β+1)
tβ if b = 0

x2Eβ(−2btβ)− β̃x
b

(
Eβ(−2btβ)− Eβ(−btβ)

)
if b 6= 0

where Eβ is the Mittag-Leffler function of order β, b > 0 and β̃ are
parameters of the CSBP, from the branching mechanism.

Remark: Mittag-Leffler function is

Eβ(z) =
∞∑

k=0

zk

Γ(βk + 1)
. (12)
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Particular case: Feller branching diffusion

Let {Xt}t≥0 be the solution to SDE

dXt = bXtdt +

√
β̃XtdWt , (13)

where {Wt}t≥0 is a standard BM and the initial condition is X0 = x .
The transition density px (y , t) satisfies the Fokker-Planck equation

∂tpx (y , t) = −bpx (y , t) + (β̃ − by)
∂

∂y
px (y , t) +

β̃y
2

∂2

∂y2 px (y , t).

Theorem

Under previous hypothesis, let {X (E(t))}t≥0be a CSBP with memory, with
{X (t)}t≥0 Feller branching diffusion. If there exist the density mx (y , t), then it
satisfies the fractional differential equation:

∂β
t mx (y , t) = −bmx (y , t) + (β̃ − by)

∂

∂y
mx (y , t) +

β̃y
2

∂2

∂y2 mx (y , t),

with ∂β
t is the Caputo fractional derivatives.
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Thank you!

Luisa Andreis
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