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Chapter 1

Introduction

The main subject of this course is the study of certain functional integrals arising
in statistical mechanics and physics.

1.1 Some motivation: an example of (Gibbs mea-
sure

Let us consider the atoms in a perfect cristal. At equilibrium the atoms are
located at the sites € A where A < Z¢ is a finite set. Thermal fluctuations
and other perturbations may cause the atoms to move a bit away from their
equilibrium position. The atom at site x is displaced to a postition z + F(x),
where @(z) € R%. The collection of all displacements {¢(x)}ca is called a field
(vector valued)
p: A—>R?
z — p(x)

Each function ¢ € (R?)" is a possible configuration for the deformed cristal.
The set of all possible configurations will be denoted by

Q = (RH™,

Atoms “prefer” to remain near their equilibrium position so it takes some effort
to displace them. This is encoded in the energy functional

Hy: (RHY - R
= H(p) = 5 Xpyen 16(z) — By)

where we use the Ly norm |v? = Z;l:l v? and = ~ y denotes a pair of nearest
neighbors on the lattice | — y|| = 1. Note that if we deform each atom by the
same amount J(z) = ¢ Vo then we are doing a global translation of the cristal
(no deformation) and the corresponding energy is zero.

We assign to each configuration ¢ a weight (probability density) proportional
to exp[—BHA(p)] where 8 = 1/T and T is the temperature. Is this choice

P (1.1.1)
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6 CHAPTER 1. INTRODUCTION

consistent with our intuition? For a large deformation the energy is large and
the corresponding probability is small, as we should expect since it is “hard”
to deform a cristal. The insertion of the 8 parameter is also consistent. Indeed
for small temperature the atoms are “frozen” and moving them is “hard”: the
corresponding 3 is large thus giving a small probability. For high temperature
the atoms are “exited” and move very easily: the corresponding S is small thus
giving a large probability.

Boundary conditions The cristal is connected to the external world through
the boundary of the volume A. This interaction translates into boundary con-
ditions on Hy. The corresponding energy functional will be denoted by H/(\bc).

All the above arguments can be made precise by introducing a probability
measure on (2, F) defined by

—BH{ (¢)
be € A
A (p) = ———dyp (1.1.2)

)

where € is the set of all possible configurations (in our case deformations of the
cristal), F is a o—algebra on  and dy = [[ H?:1 dy;(x) is the Lebesgue

measure. Finally Z g is the normalization constant ensuring that Mg\bz Q) =1.
This constant is called the partition function

(bc)
Zpapg = J, e_ﬁHAb (“p)dgo.
Q

Remark 1 If we insert in the definition above the energy functional (|1.1.1)),
the corresponding integral is divergent! The boundary conditions will ensure
the integral is finite.

Remark 2 The energy functional (1.1.1)), is a quadratic form

Ha(p) = (9, Ap) = D) o(@)Ayip(y)

z,yeN
where for any pair x,y of sites not on the boundary of A we have

—1 Jz -yl =1
Apy=4 2d =y
0 Jz-yl>1

The corresponding measure (|1.1.2) is called a gaussian measure. Most of the
problems we will consider will be given by some form of gaussian measures, or
perturbations of gaussian meausures.
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1.2 Thermodynamic limit

The measure defined in (|1.1.2)) is called a finite volume Gibbs measure. If now we
take a sequence of growing volumes A,, with A,, — Z¢ we can ask the following
quastions

e Does the sequence of measures converge to some infinite volume measure?

e If yes, does the limit depend on the choice of the boundary conditions?

The answer to this question gives informations on the existence of a phase
transition in the model (ex: liquid/gas or cristal/liquid).

1.3 Functional integrals

The object of this course if the study of a class of functional integrals of the
type . These are integrals over spaces of functions.

Going back to our initial example, cristal deformations, let us consider d = 1
and A = (1,2,...,N). An element of the space of configurations ¢ € € is a
function function ¢ : A — R, but we can see it also a set on N real numbers
v =(p(1),...,0(N)) corresponding to the values of the function at each point.
Any function

F: Q>R
¢ — F(p)

can be seen as a function on N real variables F(¢) = F(p(1),...,¢o(N)). The
Lebesgue measure on € is then the Lebesgue measure on the product space RY.

N
dp = | [ de(3)-
j=1
Using Fubini’s theorem we can define the integral

ff(xla~~~axN)dxl"'de

indipendently of the integration order, for any integrable function f : RV —
R ({]f] is finite). This construction can be generalized to a countable set of
variables.

When d > 1, let A a finite set of sites in Z%. At each site we have d
variables 1 (x),... .@q(z). Since A is finite we can define the product Lebesgue
measure on the d|A| variables corresponding to a cristal deformation . The
thermodynamic limit then can be seen as the problem of defining the integral
over an infinite number of variables.
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Functions in the continuum . The arguments above concern only spaces of
discrete functions ¢ = {p(x)}.en, where A is a set of lattice sites. Let us suppose
now that the atoms are not in a solid phase but rather in a gas state. Then
each atom could be anywhere in a region A ¢ R? of finite volume. The function
() € RT may represent the number of particles in a small neighborhood of z.
Then a configuration of the system is given by ¢ = {¢(x)}.ea an uncountable
set of real variables. Measure theory teaches us how to construct sigma-algebras
out of countable products. In order to make sense of a measure on a uncountable
product space we introduce spaces of distributions.

1.4 Role of the boundary conditions

Boundary conditions fix how the region A we are studying is connected to the
outside. In our example we could say that on the boundary of our cristal we are
attached to a very stable material where atoms are practically frozen. Then we
have p(z) = 0 for all sites = on the boundary of A (Dirichlet type b.c.)

The role of b.c. in the measure dug\b'c) when A gets big is analog to the
initial conditions in a PDE. let us consider two famous PDEs: the heat and

wave equations in one dimension:

opu(x,t) = a?0%u(z, ), o(z), xzeR,t>=0,
Opu(z,t) = v20%u(x, t), u(z,0) = ¢(x), u(z,t) =¢(x) xzeR,t=0.

8
~~
&
=
Il
S

The solution for the first (heat) equation is independent of the details of the
initial condition ug(z): in particular any irregularities of uq are instantaneously
smoothed out. This means we loose information. On the contrary, the solution
of the second (wave) equation depends very strongly from the initial conditions.
Actually, in this case the initial profile ¢ travels without ever changing shape.
This means information is transferred without losses.

In the language of measures, the independence of the limit from the boundary
conditions means there is only one possible measure describing our system at
very large volume (one possible phase) , the dependence means that there are
several possible measures at large volume (hence several possible phases).

1.5 Multiscale analysis

Let us look again at the cristal energy H/(\b'c) (¢) =3 Dip~yen 18(z) —@(y)|*> with
p(x) = 0 for all x on the boundary, meaning that x € A but there exists at least
one site y € A with  ~ y. In this functions only nearest neighbor sites z ~ y
interact. Then the corresponding density e 2 £ is maximal when the variables
@ are approximately constant on small regions (otherwise the probability is
small). In other words the integral over du is concentrated around regions in §2
corresponding to configurations that are “locally constant”.
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In particular the boundary conditions can affect only a small number of sites
near to the boundary of A. If the fraction of sites on the boundary |[0A|/|A]
vanishes as A — Z<, (take for instance a growing sequence of cubes), then it
is reasonable to expect that boundary conditions will have no influence on the
limit. Boundary conditions may change the limit only if they are able to interact
effectively with all sites in A. When this happends we say that a short range
interaction becomes effectively long range.

The analysis of the large volume limit can then be translated in the analysis
of multiscale effects (short range interactions becoming effectively long range).

Note that, except in some special cases, we cannot compute the integrals in
a closed form! We need tools to get estimates as precise as possible.

1.6 Plan of the course

We will consider some examples of functional integrals arising from statistical
mechanics and physics, and learn techniques to construct the limit as the number
of variables tends to infinity.

In models coming from statistical mechanics the measure is always a proba-
bility measure (real positive and normalized to 1). The field ¢ may take values
in a discrete set (ex: +1), in a bounded set (ex: ¢(x) = cos(f,,), with 6 € [0, 27[),
in an unbounded set ¢(x) € R.

In models coming from physics, the measure may become complex valued,
though still normalized to 1. The field ¢ may be a real or complex vector, a
matrix and some components of ¢ may even be Grassmann variables (anticom-
muting numbers ab = —ba).

In many cases the energy is of the form

H(p) = ) Joyllp(@) = o@)I? + 3,V (o(2)),

where Jg, = Jy, = 0. The first term creates an interaction between different
sites, the second term gives a set of independent constraints on each variable (it
is called the diagonal term). When J,,, = 0 Yz, y, the measure e PH factors in a
product of measures. When V' = 0, the integral cannot be factored. Depending
on the relative size of the parameters, we will see that the integral is dominated
by the interaction term or the diagonal term. These two situations correspond
to different physical properties in the underlying model.
Some examples of potential V are

o V(p) =m?|po|? + Ap|* (single well)
o V(o) = A(||l¢|? = u)? (double well or mexican hat)
e V(p) = An(1 + ||¢|?) (log potential)

In the first two cases the potential is a convex function, for large |¢||, in the last
case, the function becomes concave, adding additional problems.
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1.7 Digression: why choosing an exponential weight?

We will motivate the choice of an exponential weight in the simpler case of a
finite set of possible configurations. On can justify the same arguments in the
general case (see for instance the lecture notes by Stefan Adams, chapter 7,
http://www.mis.mpg.de/preprints/In/lecturenote-3006.pdf).

Let Q4 the set of all possible configurations for our finite system (the cristal
in our example) and let H : @ — R be the corresponding energy functional.
Since € is finite, in order to define a probability measure we only need to give
a set of numbers {u(w)}weq such that 0 < p(w) <1 and Y, pu(w) = 1. Let us
consider how the system is connected to the external world.

Case 1: Isolated system The only way to change the energy of the system
is to “give away” some of it or “take in “ some of it from outside. But an
isolated system has no exchange with the exterior so in this case the energy is
fixed H(w) = E Yw € Q. Then there is no way to decide which configuration is
preferable (they all have the same energy) and the most reasonable choice for u
is the uniform distribution that assigns the same weight to each configuration:

p(w) = Q] Yw e Q, where|Q}| = cardinal of 2.

Case 2: system in contact with a reservoir at fixed temperature 7' In
this case the energy can change, but since the temperature outside is fixed the
average energy of our system is given by

E[H] = ) p(w)H(w) = E(T). (1.7.3)

weN

This time a uniform measure would not work since we expect large deformations
(large energies) to be more unlikely than small deformations (small energies).
The correct choice is to take a measure “as uniform as possible” under the
constraint . To quantify how “uniform” a measure is we use the entropy.
Let M(Q) be the set of probability measures on 2, then the entropy is defined
as
S: M(Q)->R
p— S(p) = =2, plw) Inp(w).

To see the kind of information we obtain from S let us consider two extreme
cases:

(a) p(w) = 1/|9| the uniform measure. Then we have the same propability
of being anywhere inside 2: this means we have as little information as possible.
In this case S(pu) = In(]€?]), that is a large number when €2 is large.

(b) u(w) = 0w, a measure localized on just one element wy of 2. Then we
know (with probability 1) that we must be exactly on the configuration wg: this
means we have the maximal information. In this case S(u) = —p(wo) In(wp) = 0.

In general, the more “uniform” our measure is, the larger S. Therefore we
choose the measure p that maximizes S(u), under the constraint .
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Lemma 1 Let H be a (non constant) energy functional,

—BH() )
V() =~ Zs = yje MW

a Gibbs measure and set
f: ]0,40] —-R
B — f(B) = E,,[H].

Then we have the following results.

(a) For each E € Range(f) there exists a parameter 3 such that for f = B
E,,[H] = E.

(b) For any probability measure satisfying E,[H] = E we have S(u) < S(vz)-
Equality holds only for p = vg.

Remark When H is constant (H(w) = H VYw) then the Gibbs measure vg
coincides with the uniform measure for any choice of 3.

Proof Let Hg = E,,[H]. In order to prove (a) note that

f'(8) = ~Ey, [(H - Hp)?] ZVﬁ — Hg)? <0,

since vg(w) > 0 Yw and there is at least one w where (H(w) — Hg)? > 0
(otherwise H would be the constant function). Then f is injective, hence (a).
To prove (b), note that

== pu(w) In p(w Zu

Now using the definition of vg the second term is

— " p(w) nvg(w Zﬂ )InZg + B pw)H(w) = In Zg + BE = S(vp)

Zu w) Invg(w

Inserting this we have

-Dn) In £ ) = S(v3) - Y Vs W) B(X () = S(v5)~Ey, [B(X (w))]

where we set
O(z) =zlnx, X(w) = Hw) .

Now ®”(z) = 1/x > 0 so by Jensen’s inequality

Euy [0(X ()] > @ (B, [X(@)]) = ®(1) = 0.

Since ® is strictly convex, equality holds only when X (w) is a constant func-
tion, that means there exist a constant K such that p(w) = Kvg(w) Yw. But
D w) =X, vz(w) =1, then K = 1. This completes the proof of (b). O
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Chapter 2

One dimensional problems

When d = 1 our finite region A is a finite chain of points A = (—L,—L +
1,...0,1,...,L). The techniques applying to 1d systems can be generalized to
quasi-one dimensional systems, such as strips of finite width. The material in
this chapter is mostly based on the lecture notes by A. Kupiainen [?] (for the
Ising model part) and on the book by B. Helffer [?] (for the part on integral
operators).

2.1 Ising model

We will define the model in general dimension and later specialize to d = 1. Let
L= (Ly,...Lg)eN?and A = [~Ly,..., L] x - [~Lyg, ... L4] arectangle in Z¢
centered around the origin. To each site x € A we associate a spin (the analog of
(z) in the cristal example) taking only two values —1,+1. The configuration
space is then Qx = {1, —1}* and a configuration of the finite system is

o: A —{1,-1}A
z —o(z),

where o(x) is called the “spin” at site x. Let Q = {1, —I}Zd be the set of spin
configurations on the whole lattice.

The energy for a configuration o € 4, is given by the finite volume Ising
Hamiltonian HY : Q) — R

H{(o)=-J ). 0w0,— > hos, J>0, heR

~yeA e

The first term in H' represents an interaction between nearest neighbor sites
and the parameter J is called the coupling constant. The last term is a sum of
independent contributions at each site. The parameter h is called the external
magnetic field.

13
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Phenomenology The coupling term in H’! is minimum when all spins oy
have the same orientation o, = +1 Vx, or 0, = —1 Va: in both cases the
coupling contribution is —J wae A 1. On the other hand, the second sum in

H' is minimum when all spins have the same sign as h, hence for h # 0 the only
spin configuration minimizing the energy is o, = sign(h) VY € A. In this sense,
h plays the role of an external magnetic field for a ferromagnetic material: when
h = 0 the spins try to align, but since they do not know which direction to take
(+1 or —1) they end up being half +1 and half —1 so the average orientation is
zero. When an external field h is present, the spins align with it.

Note that when J < 0 nearest neighbor spin pairs try to take opposite spin
orientations. This is called paramagnetic behavior.

History The Ising model was introduced to describe ferromagnetic materials,
but it proved to be relevant in a wide variety of problems, from lattice gases, to
biology, economics and image analysis.

2.1.1 Boundary conditions

Let 7 € {1, —1}Zd a fired configuration on the infinite lattice.

Definition 1 The boundary of A is defined by

O\ = {x € A|Ty € A°with |z —y|| = 1}

Definition 2 The Ising Hamiltonian with ¢ boundary conditions is HY :
Opr — R
Hi(o)=H'(o)=J > > 0.0,
TECN yeAC ,y~x

where & € (Q is some fixed infinite volume spin configuration.
The Ising Hamiltonian with periodic boundary conditions is H KW QA >R

HY (o) = —J Z 0,0y —h Z Og
z~y€eTg zEA

where T; =Z/L1 X -+ X Z/Lg4 is a torus.
Finally The Ising Hamiltonian with free boundary conditions is

H{™(0) = Hi(0).

2.1.2 Probability measure and thermodynamic limit

Let H(®94 be the finite volume Ising energy with some fixed boundary condi-
tions. We define a probability measure on Q5 by
e~ BHL(0)

be
z{)

w9 (o) =
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where the normalization factor

be _ (bc) .
Zz(\,ﬂ): Z e~ BHL (o)

geQA

is called the partition function. Let {A,}nen be a growing sequence of regions
st. Ay € App1 Y and lim, o A, = Z%.
We denote by F,, the sigma algebra on €5, and by F the (infinite volume)

sigma algebra on 2. Then each measure uffc)ﬁ on F, can be extended to a

measure fi, on JF with the following definition

fin(4) =0 FANQ = &
= ME\Z):?B(A N Q)  otherwise.

In order to study the thermodynamic limit we will consider the following class
of functions.

Definition: local functions. A function f : Q@ — R is local if it depends
only on the spin value on a finite set of lattice points. Precisely, f is local if 3
aset X < Z* with | Xf| < oo and a function F : Qx — R s.t.

f(O')ZF(Jx) VJEQa

where ox = {04 }zex is the restriction of the configuration o to the set X.

Example The functions fi(c) = o, and fa(0) = 04,02, (where x1,zo are
fixed lattice points) are both local functions with X = {z1}, {1, 22} respec-
tively. We will see below that all local functions can be obtained from functions
of this form.

Lemma For any function f : 2 — R depending only on spins inside the finite
set X, there exists a family of real parameters {as}acx associated to each

subset of X satisfying
flo) = Z a0 A

oA = HU“L

€A
Proof. Let 1,(0;) = 1¢,,=1}(0z) and 1 (o) = 1(, —_13(0,). This can be

written in the more condensed form

where

1o,(00) = 00,0, = 10,(0), 00,00 = £1.
Let x1 = (14 +1_)/2 and x2 = (14 —1_)/2. Then

1, = x1 +oxe, with 0 = £1.
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and the function

15/(0) = H 10;(090) = H 1., (U;) = H [Xl(aé;) + UwX?(U;)]

zeX zeX zeX
= Z H%HXz(Ué) H x2(07)
ACX zeA T€EA zeT\A

equals 1 when o = ¢’ and equals 0 otherwise. Then

f(0) =Y 10(0) f(0) = D 15(0) f(0")
=2 f(0) [ ] [xa (@) + ouxa(or)]

zeX

- Z ng Zf(cr’)nxz(a_;) H x2(0%)

ACX zeA o’ TzEA zex\A

= 3 [[owax

ACX zeA

where ax is a constant independent of the configuration o. m

Definition: thermodynamic limit We say that the sequence of measures

,ug\b?ﬂ converges to a measure p on € if

B [f] = 3 (@) (@) nrs 3 t(0) f(0) = B[]

for all local functions f: Q2 — R.
By the lemma above, it is enough to prove the existence of the limit for
E,[ox] for any subset X with |X| < oo.

2.2 Transfer matrix for the Ising model in one
dimension

Let A = [—L,...,L]. The finite volume Ising Hamiltonian in d = 1 can be
written

L—1
H{(o)=—J ). 0w0ps1—h Y how, J>0, heR
r=—1 xzeEA

The boundary is reduced to two points A = {—L, L}, therefore the Hamiltonian
with & (resp. periodic, free) boundary conditions is

HK(O‘) =HI(0’) — J[O’,Lé’fol + 0L5L+1]
HY"(0) =H'(0) — Jopo_y,
H{"(0) =H}(0).

where & € 2 is some fixed infinite volume spin configuration.
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2.2.1 Partition function

Let Z/(\b;) be the partition function at finite volume with some fixed boundary
conditions. Then we have

Lemma 2 The limit as L — oo of |A|7!In Zj(\bg is finite and independent of
the boundary conditions

Proof We will prove this result for &, periodic and free boundary conditions.
In the case of ¢ and periodic boundary conditions, the partition function can
be written as

L-1
o _ (be) ¢ e I
Z/(\b,B) = E e BHN (o) — E F}ll ft(U_L)l | | Th(ax70x+1)] F] ght(aL)

oEQA geQp r=—1L

_ left 2L rright
_(Fh Ty F, )

where T}, is a 2 x 2 matrix

B+hp -B o / o!
fh= ( Z—ﬁ iﬁ—hﬂ ) L Tuloo)) = e P (2.2.1)
while F,lff #/right ave 2 component vectors encoding the boundary conditions
_ Bho . Bho _
Flelt (o) = BoT-1-16%5" Froht (o) = 2% v for 7 b.c.,
. Bho
F' o) = F[9"(0) = e 2" for free b.c. (2.2.2)

Finally (', ) denotes the real euclidean scalar product . In the case of periodic
boundary conditions

L-1
or _gHP) (o
Zz(\zjﬁ): D, et =y l I1 Th(0170w+1)] Th(or,0-1)

oeQp oceQp Lz=—L
=Tr 725!

To study the large volume properties of the partition function then, we have to
study a 2 x 2 matrix, reducing the problem from 22X*! to 2 spins only. The
matrix T}, is real symmetric hence diagonalisable. The eigenvalues are

A1 = e” cosh(Bh) + \/[65 sinh(Bh)]? + e 28,

Ao = ¢ cosh(Bh) — y/[e? sinh(8h)]? + =28, 0 < Ay < Au.

Let v1,v9 the corresponding normalized eigenvectors and P, P> are 2 x 2 ma-
trices corresponding to the orthogonal projections on vy, vs:

Pi(0,0") = vi(o)v1(c’), Py (v) = (v1,v)v1, Yo € R2
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The definition for P, is similar. Since they are orthogonal projections Py, P,
satify
P} =P, P} =P, PP, =P,P, =0.

Moreover, the eigenvector vy for the largest eigenvalue has the following addi-
tional property, that will be crucial for our proof:

v1(0) > 0 Yo.

Indeed let v; = (x1,y1). Then we obtain

y1 =21Ch where C; = ¢’ [\/[eﬁ sinh(Bh)]2 + =28 — [’ sinh(Bh)]] .

(2.2.3)
Since C7 > 0 for any choice of 3, h the two components x; and y; must have
the same sign. Inserting the spectral decomposition T" = A\ P; + Ao P> in the
expression for Z we have

c ef 7 e T A 2L e T
Z/(\bﬁ) = (F;ll Nl o ght) = APF l(F;lL P Fy ght) + ()\?) (FflL I PyFy ght)]

righ A 2k T
N2 l(F}ff for) (o ) + <A?> (Rt PaFy 'ght)]

To complete the proof we need two ingredients

e the first term in the parenthesis is strictly positive. Indeed (F}lfft, vy) =
> F,lfft(a)vl(a) > 0 since v1(c) > 0 and F'®f*(¢) > 0 for all 0. For the
same reason (v, F'9") > 0.

e the second term in the parenthesis disappears in the limit L — oco. This
holds since |Aa| < A;1.

Using these two ingredients we obtain

In Z/(\b;) 2L 1 left right by 2L left right
2L+’1 =2L+11H)\1+2L+11n|:(Fh 701)(U17Fh' )"‘(Tf) (Fh P Fy - )]

—1-x InA =1n [65 cosh(Bh) + \/ [e# sinh(Bh)]? + 625]

Since the boundary conditions appear only in F'¢/t/7i9ht the result is the same
for free, or for any choice of ¢ boundary conditions.
In the case of periodic boundary conditions

2L41
Z/(\ZTZT) =Tr T}?L+1 - /\iLHTr P+ )\gLHTr Py = /\%LH ll n () ]
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Therefore

Iz

. 3\ 2L+
5T+ 1 =ln)\1+2L+11n[1+(Af) :|_)L~>Iln)\1-

The limit exists for any choice of 3, h and coincides with the result obtained
with free or & boundary conditions. O

2.2.2 Average magnetization

The finite volume average magnetization at position z is defined by

—BH (0
ZUEQA e A ( )0’1

—BH (o)

Exlo,] = S
geQp e

We have the following result

Lemma 3 The average magnetization has a limit

1=

EA[O—I] — Lo Mﬁ(h) = 1+ 2
1

(2.2.4)

where Cy is given in (2.2.3). The limit Mg(h) is independent of x and the

boundary conditions, is a smooth increasing function of h satisfying

—1< Mg(h) < +1 VYheR,
lim Mp(h) = +1, lim Mg(h) = —1,
—>—0

h—c

and has the same sign as h. In particular Mg(0) = 0.

Remark 1 This result is consistent with the physical intuition saying that
the spins try to align with the magnetic field h. When h becomes very large all
spins align hence the magnetization becomes +1 (resp. —1) depending if h > 0
or h <O0.

Remark 2 The function M : R —] — 1,1][ is invertible, so we could use the
magnetization M as a parameter in our measure instead of h: g par),

Proof For simplicity we consider > 0. The same arguments then hold for
x < 0.

As in the case of the partition function we can express Ex[o,] in terms of
the transfer matrix T}:

left L4z L—x roright
(Fiett, T s T pyo)

Eplo.] =
A[U ] (F’lleft T,%LF}:ight)
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where Ty, FI7t FI'9" were defined in (22.1) and ([22.2) above. The 2 x 2
matrix > encodes the new term o,

10
Y= ( 0 —1 )a EJ,U’ = 600’0-
Inserting the spectral decomposition T' = A\ P; + Ao P> we get
L+x L—x
(Fleft |:]31 (K) P2:| N [Pl ()\2) P2:| mght)
2L .
(s [ () ] )

left right .
(Fh 7P1 ZPthg ) _ (F}lleftavl)(vly Evl)(th}:zght)
(Fleft7 PlFright> (F}lfft, Ul)(vlF;zght)

(v1, Zvy) Zvl 20 = v (+1)% — v (=1)2,

Exloz] =

—Lox

where we used as before (F}lleft,m) > 0, (F,:ightml) > 0 and |A2| < A;. Using

([2.2.3) we see that
1-C?

1+ C?

where C'; > 0 is a smooth function of h and satisfies

1]1(1)2 — 1)1(—].)2 =

C)<efleP]=1 when h >0
C)>eflePl=1 when h <0
Ci =1 when h = 0.

Therefore M (h) has the same sign as h and M (0) = 0. Moreover

1 e sin
C! = ¢** B cosh(Bh) [ NG smh(;&)ﬁ)’iew - 1] <0 VA,

then M'(h) = (fflcf)z > 0 Vh. Finally

4B

C1(h) = ¢2°| sinh(Bh)] [2 +0 (ﬁ)] b 0

hence limyp, 1o M(h) = £1. This completes the proof. a

2.2.3 Spin-spin correlation

The two spin correlation is defined by

C2 =Eplo,0,] — Ex[o,]Ea[oy].
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This quantity is zero when o, and o, are independent. We have the following
result

Lemma 4 The infinite volume limit for C’fc\y exists, is independent of the bound-
ary conditions and satisfies
_lz—yl

. A _ _ 1=—dJ1
Lll_r);}LCZy—ny = Ke ¢

where £ > 0, K = 0 are constants independent of x and y. The parameter &
gives the distance where the spin correlation starts to become small and is called
the localization distance.

Proof As in the previous subsections we use the transfer matrix representa-
tion. Without loss of generality we can consider y > x. Then

(F,lff P > T}f*yF,:ight)

left 2I ight
(FcrtzprEyion)

Ealoz0y] =

where F;Lef t/rig ht7 T}, and X are defined above. Inserting the spectral decompo-
sition T' = A\{ P; + Ao P we get

(F,{fft, [P1 () Pz] > [Pl + () Pz] > [P1 () Pz] F;;ig’“f>

Eploz0y] = T :
(F,lfft, [Pl n (ﬁ—f) PQ] F;;”’ht)

y—x .
(F,lfft,Pl 5 [Pl n (i—j) P2:| 5 PlF,;”ght>

(F}lleft7 Pl F;L"ight)

— Lo

(B P S P Y PEM N Fleit pyys Py 3 PLE] M

y—a (
= (F}ZLEfta PlF;;ight) ()\1) (F}ieft’ PlF;;ight)

The first term in this sum gives

(BT P S PSS PR (BT o) (01, Son) (01, o) (o1, ™)

(Fflleft7 P1 F}’l;ight) (F}lleft, Ul)(vl, F}’rL‘ight)
— (00, 500)? = My(h)? = lim Ealo,] Exlo, .

Therefore limy _, C’;\y = Ke l2=9l/¢ with

(Fleft py s Py & PLE;9M) 1
K=" Teft right L = (v1, Za)?, £= I
(Fh 7P1Fh ) n Ao

The values of K and £ do not depend on F} so the result is the same for all
boundary conditions. Similar arguments hold in the case of periodic boundary
conditions.
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Comparison with the case of no interaction If we set J = 0 instead of
J =1 in the Ising Hamiltonian we obtain a product measure on 2

L-1
py—o(o) = H eBhos
j=-L

and all correlation functions are easy to compute. In particular

L—1
Z{=0 = H Z ePhoe — [2 cosh(Bh)]*H

j=—Lo,e{1,—1}

3. 1,1 efhoeg, sinh(8h)
Ex o 1= =€{1, — = M(h
AJ=0 [02] S ei11y € cosh(h) ()

Oy =0 Va,y, VA

As in the J = 1 case the magnetization M (h) is invertible, and we can define
h as a function of M, i.e. the magnetization we want to obtain: h(M) =
% tanh ™ (M). All correlation functions are zero because the measure is factored
over a product of local measures. The infinite volume measure exists and is
given by

uéjv(}(o) = H ePho(M)as ho(M) = L tanh ™ (M).

B
TEZ

In the case J = 1, we have see that two point correlations decay exponentially
and one can show the same result for all correlation functions. This means that
the infinite volume measure pg j=1 is “approximately” the product measure (in
a sense to be made precise)

ppa=r ~ | [ MO0 by (M) = Mg (M),

T€EZ

where the magnetization hy is now fixed by the function (2.2.4]). Therefore the
measure “looks like” what we get in the J = 0 case, with a modified parameter
h. We say the magnetic field parameter has been “renormalized”.

2.2.4 Generalizations: transfer matrix in a strip

Let A = {-L,...,L} x {1,...,W}. When L — oo this becomes an infinite
strip. Its properties are similar to 1d chain, hence this is called a “quasi-one
dimensional” problem. A point Z € A is identified by two coordinates ¥ = (z, y)
with z € {—L,...,L}, y € {1,...,W}. The space of configurations is Qp =
{1,—1}" and the Ising Hamiltonian on the strip is

H(o)=—J Z UfO’g‘—hZUf

Z~yeA ZeA

L-1 [ W L wW—1 w
—J Z lz Ux7y0x+17y1 — Z lJ Z OryOzy+1 +hz oy

z=—L Ly=1 r=—L y=1 y=1



2.2. TRANSFER MATRIX FOR THE ISING MODEL IN ONE DIMENSION23

where in the first term we have the (horizontal) interactions between spins at
the same height y, and in the second term we put together all terms involving
only spins on the same vertical line corresponding to x. To make the transfer
matrix easier to see, we define

Xa:(y) = Ua:,ya YE {17 . 7W}

the vector made with all spins on the vertical line z. The configuration o can
be written in terms of X

o= {O—I,y}(w,y)eA = {XI}Q%:—L

and we can write H! as

L—1 L
H'(0)=H'(X)= > I(X;,Xo41) + . D(X,)
r=—L r=—L

where the interaction I and the diagonal D terms are

w w—1 w
I(X,X") ==Y X(y)X'(y), DX)=-J Y XyX(y+1)—h )Y X(y).
y=1 y=1 y=1
Then the partition function can be written as
, L—1 ‘
75 = Z efﬁH (o) _ Z Fleft(X,L) l H T(XzaXz+1) Frzght
gEQA X(=L),..X(L) x=—L

= (FlEft, TQLFTight).
where FI/!(X) = Frio(X) = =3P and
T(X, X') = e 3 P(X)g=BI(XX") =5 D(X')

Instead of a 2 x 2 matrix this time we have a 2V x 2" matrix and computing
the eigenvalues and eigenvectors may become cumbersome. To avoid doing the
explicit we apply the following result

Theorem 1 (Perron-Frobenius) [without proof] Let T be a N x N real
matriz with T;; > 0 Vi, j. Then

1. X =|T| is an eigenvalue of T
2. for any eigenvalue X' # X we have |N'| < A,

3. X is simple and the corresponding eigenvector can be chosen so that v; > 0
Vj.

4. let v be an eigenvector for X' # X. Then v must have some negative or
zero components.
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In our case T is a real symmetric matrix, hence there exists a orthonormal basis
of eivenvectors. Morevoer T'(X, X’) > 0 VX, X’ so the theorem ensures that the
top eigenvalue (in absolute value) A is positive, simple and the corresponding
eigenvector vy satisfies v1(j) > 0 V4. Then

2w 2w A 2L
T=> NP, =2 P+ Z < ) P;
=1 M

where P; are orthogonal projections and |A;|/A1 <1 Vj > 2. Then
1 2L 1 le t 7% ht le t right

In A\
—Loxw Wl

since (F'eft Py Fright)y = (F'eft v;)(vy, FT9") > 0. The magnetization and
correlation functions can be studied in a similar way.

Remark The argument works since W is kept fixed while L — co. If we try
to send W to infinity at the same time several problems appear. Among them:
(a) the ratio |Aj|/Ao depends on W and may converge to 1, (b) the size of the
matrix T diverges and we have to ensure the sum over orthogonal projections
remains well defined. Far from being just a nuisance, these problems signal that
something fundamentally different may happen in higher dimensions.

2.3 Transfer matrix for continuous spin

Let us now go back to the first example we gave in Ch. 1, namely the deforma-
tions inside a perfect cristal.

Let A = {—L,...,L} as before. The spin o, = *1 at the position x € A is
now replaced by the atom displacement ¢, € R. The finite volume set of spin
configurations {o € {1, —1}*} becomes now

Qp =R = {¢|p: A — R}

We consider the energy functional

L-1 2

Hy(¢) = Z [0 — djer]® +

m
j=—L B,

e
S

This corresponds to the hamiltonian (1.1.1) for a cristal in one dimension, with
an additional term m? Y ¢?, favoring configurations with ¢, near zero for each
2. Intuitively, this means that each atom wants to remain near to its equilib-
rium position on the lattice, independently of what the other atoms do. The
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parameter m > 0 is called the mass, and we rescaled by 8 in order to simplify
the formulas.

We will consider first the case of free boundary conditions: H (
We define a probability measure

freey — Hy.

e BHA

Z\

dua(¢) = do

where d¢ = l_[ L d¢; is the product Lebesgue measure and

Iy = J e PHNGp = Y e e Y B
R2L+1

R2L+1

is the normalization constant. The integrand inside Z is strictly positive, so
Z > 0. Moreover [¢; — ¢;+1]* = 0 for any choice of ¢ then

y po 2L+1
0<Zy < HJ ¢jd¢j=(4/2) <.
j=—L m

Hence the measure is well defined.

As we did in the Ising model, we start by studying In Z/|A| as A — Z. Our
goal is to mimick the strategy we developed in the Ising model. We can write
Za as

L—1
Zn= [P0 T Mopo) PG (235)
R2L+1 j=—L
where
k(9. ¢) = ¢ F Ve B T plestg) = prisht(g) = o=,
(2.3.6)
This expression is identical to what we obtained in the Ising case, but sums

are now replaced by integrals and the arguments we applied to not generalize
automatically.

2.3.1 From matrices to integral kernels: transfer operator

In the Ising case we defined the transfer operator as

T: R® —R?
v = [Tv](0) = Xy Toor v(0')

where T is a 2 x 2 matrix acting on R? endowed with the norm |[v|? = Y v(0)%.
The natural generalization in this context is the integral operator

K: Ly(R) —»LQ(R)

f S KS9) = [dd' K6, ¢) f(&) (23.7)
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where
k: RxR —-R

(z,y)  — k(z,y)

is called the integral kernel. While the matrix operator T was trivially well
defined, here we need to check that: (a) the function k(¢, ¢') f(¢') is integrable
and (b) the function kf is still in Lo(R).

A simple criterion is given by the Schur’s bound below.

Lemma 5 [Schur’s bound.] Let k : R x R = R satisfy the two bounds
M, =supf |k(x,y)|dy < o (2.3.8)
z Jr
M, =supf |k(x,y)|dz < oo.
y JR
Then K f(z) = (k(z,y) f(y)dy defines a bounded linear operator from Lo(R) to
Ly(R), wzth

K| < /MM, (2.3.9)

Proof Let f e Ly(R). By Cauchy-Schwartz inequality
| [ W] = [ Vikw Ve Dol

< [ | |k<x,y>|dy] [ | |k<x,y>|f<y>2dy] < a1y [y

Using Fubini’s theorem we have

[ [ avikn)lse? = [dy 7 [ do bl < Ml 17 < o

As a consequence { |[k(z,y)| f(y)?dy and hence also { |k(z,y)| | f(y)|dy exist for
all z, (except eventually on sets of measure zero). Then [K f](x) is well defined
and

|KFI? < MM | f]?

so Kf € La(R) and | K| < /M1 Mo. O

Symmetric kernels When the kernel satisfies (2.3.8) and has the additional
property k(z,y) = k(y,x) we can write for any f,g € La(R)

(/. Kg) = (Kf.g),  where (f.g) ff

is the real scalar product on Ls(R).
In the case of the cristal the kernel given by ([2.3.6])

2 2

k(z,y) = et o =Ble—y)? ;— By
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is symmetric and satisfies

My = My = sup [ by < [ ¥V dy =\ 25 < e
x m

Then K defines a symmetric bounded linear operator on Lo (R) and we can write
the partition function as

Zy = (Flelt 2L prigth), (2.3.10)

2.3.2 Expanding in a sum of projections

In the Ising case we used the expansion T = A P; + Ao P>, where P, P, are
orthogonal projections. For an integral operator this decomposition in general
does not exist. An integral operator “looks like” a finite matrix when it is
compact. Precisely

Definition: compact operator. An operator K : Ly(R) — La(R) is com-
pact if it is the limit in norm of a sequence of finite rank operators, i.e. there
exists a sequence { Ky} nen such that Ky : Lo(R) — Lo(R), its image has finite
dimension for each N and

li - = 0.
Jim K~ K| =0

There is an easy criterion to check if an operator is compact.

Criterion for compactness. If K is Hilbert-Schmidt then it is compact.

Definition: Hilbert-Schmidt operator. An operator K : Lo(R) — Ly(R)
is called Hilbert-Schmidt if the kernel satisfies

|| ke < o
RxR

In our example

J |k(x, y)|*dedy = J e*m;}x?e*Qﬁ(I*y)Qe*mQdexdy
RxR RxR

2.2 2,2 ™
<Iemzdxfemydy=—2<w.
R R m

Then K is a compact operator.
The following theorem gives conditions to ensure we can write K a a linear
combination of orthogonal projections.

Theorem 2 [without proof] Let K : La(R) — Lo(R) be compact, symmetric
and injective. Then
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1. there exists a decreasing (in modulus) sequence {\;}jen of eigenvalues
|>\J| = |)\j+1| with limjﬁy\; )\j = 0.

2. There exists a corresponding sequence of eigenvectors vj € Lo(R) such that
{vj}jen forms an orthonormal basis of La(R).

3. Let Ky = Z;‘V:o AjP;, where

[P f1(z) = v;(z) (vj, ) = ij(x)vj(y) f)

is the orthogonal projections on Vect(v;). Then

lim |[K —KN| =0
N—ox

K= 2 AP
=0

In our case we already checked that K is compact and symmetric. It remains
to verify that K is injective. We will prove the following stronger result.

Lemma 6 Let K : La(R) — Lo(R) be defined by the kernel k(zx,y) given by
(2.3.6). Then K > 0 as a quadratic form i.e. (f,Kf) > 0 for any function
f € La(R) except the zero function f(x) =0 V.

Proof

(f.Kf) = j F@)k(z, ) f(y)dady

RxR

_ j g(2)e @ g(y)dudy = f 9(@)[F + g](x)dz
RxR R

where we defined
2 2

g) = f@)e™® ", Fla) ="

The exponential factor ensures that g € La(R) n L1 (R) so the Fourier transform
of g is well defined and
| @)+ )yt = | 5 (Fralwiar = | 19 PR

R

where we used

m\
ST
&l
=l ?
m\
™
—~
7
N
R
A
QU
&
Il
m‘
»A‘h
=
=
3
\%
(an)



2.3. TRANSFER MATRIX FOR CONTINUOUS SPIN 29

To perform the las‘g integral we deform the contour in the complex plane and use
the fact that e=#% is analytic, hence the integral over any closed path equals
zero. Putting this results together we see that

(F.Kf) = f G(K)PE(R)dk > 0

Since F'(k) > 0 Vk, then (f, Kf) = 0iff g(k) = 0 Vk, iff g(x) = 0 Yz, iff f(z) =0
V. |

Consequences. Since K > 0 we have 0 = (f,0) = (f,Kf) > 0 for any
f € ker K. Then ker K = {0}, hence K is injective and the theorem above
applies. Moreover, K > 0 implies that all eigenvalues of K must be stricly
positive.

As a conclusion, in the case of our example, there exists a decreasing sequence
of positive eigenvalues {\;}en and a correspoding sequence eigenvectors {v;}jen
forming an orthonormal basis such that

N
Jim |K—Ky|=0  where Ky = Z{)Ajpj.
j:

As a consequence limpy_,, |(u, Kw) — (u, Kyw)| = 0 for all u,w € Ly(R) and

(2.3.10) becomes

N
ZA — (Fleft’KQLFright) = lim Z )\?L(Fleft,PjFMght)

N—ooo 4
j=0

2.3.3 Infinite volume limit

In the Ising case we needed two additional ingredients to control the limit as . —
00: (a) the largest eigenvalue is simple and (b) the corresponding eigenvector
has strictly positive components. Since the elements of T' are striclty positive
Perron-Frobenius theorem ensures that both (a) and (b) are verified. Here we
need a generalization of Perron-Frobenius result to integral operators.

Definition. An operator K on Lo(R) with integral kernel k(x,y) is said to
have strictly positive kernel if for any function f € L2(R) such that f(z) > 0
Vo and f > 0 on a set of positive Lebesgue measure, then [K f](z) > 0 Vz,
almost surely (i.e. except eventually on a set of measure zero). This means in
particular that k(z,y) > 0 Vx,y a.s.

Theorem 3 (Krein-Rutman) Let K be a bounded compact symmetric
operator on Lo(R) with strictly positive kernel. Let A = |K||. Then

1. X is the largest eigenvalue (in absolute value) of K,

2. there exists an eigenvector v for X such that v(z) > 0 Vx € R,
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3. A has multiplicity one.

4. for any eigenvalue |N'| < A, let w be an eigenvector. Then there are two
sets Iy and I in R of positive Lebesgue measure such that w(z) > 0Vx € I
and w(z) <0 Vz € Is.

Proof Since K is compact and symmetric, then the largest eigenvalue (in
absolute value) Ay satisfies |A| = |\g| > 0. We suppose now A\g > 0. We
will see at the end that this must always be the case. Let v be a normalized
eigenvector for Ag. Since K is symmetric we can take v real. Then

0 <(v, Kv) = |(v, Kv)| = Uv(:c)k:(x,y)v(y) dxdy (2.3.11)
< J|v(x)| k(z,y) [v(y)] dedy = (|v], K|v]).

where |[v|(z) = |v(z)], in the first passage we used K > 0 (as a quadratic form)
and in the last one we used k(x,y) > 0 (pointwise). Since v is an eigenvector
for g we also have
ol = (v, Kv) < (Jof, KJol) < | K| | ol * = |&] [lvl)*. (2.3.12)
But Ay = | K| then (v, Kv) = (Jv|, K|v|). Now let v(z) = vy (z) — v_(z) where
vy () = v(T)1yy>0, V- (7) = —v(2)1y(z)<0

hence vy (z) = 0 for all z, |v| = vy +v_ and
(v, Kv2) = (0o Kvy) = [ o a)k(eg)o-()dn >0

since all integrands are non negative. Inserting these expressions inside (v, Kv) =
(Jv], K|v|) we get

0< (v, Kv) = (vy,Kvg) + (v—, Kv_) — (vq, Kv_) — (v—, Kvy) (2.3.13)
= (v4, Kvy) o, Kv_) + (v, Kvo) + (v, Koy ) = (|U|7K|U|)
= (v, Kv_ )+ (v—,Kvy) =

+(
+(

Therefore
0= (vs,Kv_) = (v_, Kv,) = f v_(2)[Kv.](x)de.

We remember that vy (z) > 0 and v_(x) > 0. We have two possible cases: (a)
v > 0 on a set of positive measure, then [Kvy](z) > 0 Yz, then the integral
above equals zero only of v_ () = 0 Vx, hence v(z) = v, (z) = 0 Vz. The second
possibility (b) is that vy (z) = 0 Yz, then v(x) = —v_(x) < 0 Yz. We conclude
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that v can be chosen to be non negative v(z) = |v|(z) = 0 Vz. To prove strict
positivity v(z) > 0 we observe that Ag > 0 then

o(@) = £[Ko)(z) = & fkw,y)v(y)dy >0

since v(y) = 0 and there is a set I of non zero measure such that v(y) > 0 Vy € I.
To prove that the eigenvalue \g is simple, suppose A is not simple and let v’
be another eigenvector. Then we can always choose v’ such that (v,v’) = 0.
Applying the arguments above to v’ we conclude that v’(z) > 0 Ya. But then

0=(v,0) = Jv(x)v'(:r)dx >0,

that is impossible. Then ) is simple. Finally, let w an eigenvector for |\| < Ao.
Since K is symmetric we must have

0= (w,vg) = Jvo(x)w(x)d:c.

Since vo(z) > 0 Yz, w must take both positive and negative values to ensure
the integral is zero.

It remains to prove that Ay > 0. Suppose \g < 0. Then repeating the
same arguments as in we find —(v, Kv) = |(v, Kv)| = (Jv|, K|v]). Then
becomes (v4, Kvy)+ (v—, Kv_) = 0, hence using strict positivity of the
kernel vy (z) = v_(z) = 0 V. This ends the proof. a

Using the results above we can prove the following lemma.

Lemma 7 Let K : Lo(R) - Lo(R) be defined by the kernel k(x,y) given by
. Let Ao be the largest eigenvalue A1 < Ao the next eigenvalue. Let vg be
the normalized eigenvector for Ao with vo(z) > 0 Yz and Py the corresponding
orthogonal projector. Then

K=MNFP+ K;

where K1 Py = PoK; and | K| = Aq.
Proof By Th. [3:3:11] and [3] we have

K1=Z/\ijZKHIIH1—>H1

j=1

where H, = vol is the subspace orthogonal to vg and 0 < A; < Ay < Ap for all
j. The result follows. O

2.3.4 Partition function and moments

Partition function Using the results of the previous sections we can write

ZA — (Fleft’ KQLFTight) — (Fleft7K2LF’r‘ight) — )\(%L [(Fle‘ft, POFTight) + (};ﬂleft7 %F’I“ight):l
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Since
2L . . 2L . 2L
(F1ef, S prioh)| < |ptesepprione) [BOL] ™ = pptertyprione [ 3] 0 0
(Fle‘ft,POFTight) — (Fleft,’l]()) (,UO,Fright) > 07

we can write
. In ZA
lim ———

L |A| = hl/\o.

Magnetization Contrary the the Ising model here by symmetry we have
Ealop;] =0 Vj, VA.

To get some non trivial result we must consider ¢?. In the Ising case Ex[02] = 1
trivially since o2 = 1. On the contrary here
(Fvleft7 KL+j22KL7jFright)

(Fleft’ K2LFright)
where we suppose j > 0 and we defined [¥? f](z) = 2% f(z). Note that [X2f] ¢
L?(R) in general. Let

S(R) = {f € C* (R)| supla|’|f*)(2)] < o0 ¥q,p > 0}

Ea[¢5] =

be the Schwartz space on R. Then ¥? : S(R) — S(R) Moreover K f € S(R) for
any f € L?>(R) (as long as m > 0). Then for each finite volume A the expression
above is finite and

left 2 right
_ oy (Fleft PS2 Py Frisht)
[}I_I)I; EA [¢J] - (Fleft’ POFright)

Here comes a new problem: though in the discrete case the final expression was
obviously finite, here the information vy € Lo(R) is not enough to garantee that
the integral is finite. We will need to determine more precisely the properties
of vg(z). This will be done in the next subsection.

= (vo, X?vg) = Jx%g(ac)dx (2.3.14)

Two point correlation Let us suppose now (v, ¥?vg) < 0o and consider the
correlation
(Fvleft7 KLJerKlijKLleright)

(Fleft, KQLFm'ght)
where we set 0 < j < [ and [2f](x) = xf(z). As in the case of ¥? we have
Y :S(R) —» S(R) and K f € S(R) for any f € L%(R), then

C'f\l =Exlpjoi] =

(ES*, oS iy SRy FrioM)
(Fleft , POFright)

i i
= (vg, 2vg) (v, Xvg) + ’U(),ZK%‘JEUQ = ’U(),EK%JZ’UO
Ay ? Ay ?
0 0

1—j
= (vo, E%Evo)

Lh_rgv Exlgjoi] = \L

[1=34l

1—j B
< JvoX|? (i—;) = (v, X?wg) e €
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where £ = [In i‘—?]’l.

2.3.5 Eigenvalues and eigenvectors of K
Top eigenvalue

Since the kernel k(x,y) is written as product of gaussians, we can try to find an
eigenvector with a gaussian form.

—a$2

Lemma 8 The function go(z) = e , a >0 is an eigenvector of K iff «

a =+/fm? +m*/4. (2.3.15)

The corresponding eigenvalue is

Mo = 4 /m. (2316)

Proof If we apply K to g, we obtain

[Kga](x) = e (+m"/2) Je_yz[“+(5+m2/2)]e+25”dy

46212

_ P —a?(B+m?/2) , T[at (5]
=\ o " O e el
_ —z? (,8+mz/2)—ﬁ—
= /m(g [ +(8+ /2)]

Then [Kg.](z) = pga(z) iff © = po and

52

o= B )

iff o = (8 +m?/2)? — g2

O
Note that go(z) > 0 Va then by Krein-Rutman theorem p, must the top
eigenvalue p, = Ao = | K]||. Let

1

vo(z) = (22)7 go(z) (2.3.17)

be the corresponding normalized eigenvector. Then the expression (vg, ¥%vg) in
(12.3.14)) is
1
(vo, D2vp) = 4/ 22 fa:26720‘x2dx =5 <%
@

the limy_,. EA[¢§] is finite and limy,_,o, Ex[¢;0r] < Celi=kI/E,
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Other eigenvalues

In order to estimate the localization lenght & in Ex[¢;¢x] we need to know also
the second eigenvalue \;. In our example, we can actually find all eigenvalues
and the corresponding eigenvectors.

Lemma 9 The eigenvalues of K are the sequence

B

N = paN.,jeN, g = — .

Each eigenvalue is simple and the corresponding eigenvector v; can be written

as

v;(z) = (a*)7vo(2), where  a* = —% + 2au,

and vy is given in (2.3.17)) above.

Proof We remark that g, is the solution of g/, (x) + 2azgs(z) = 0. Let a =
% + 2ax and

S(R) = {f € C*(R)| sup |z|?|f* ()] < 0 Vg, p > 0}

be the Schwartz space on R. Then a : S(R) — S(R) and

(f.ag) = (a%f,9)  Vf,geSR).
Since vy € S(R), u; = a*vg € Ly(R) Y5 > 0. Morevover for any f € S(R)

(K 0) = [~ 45+ 200] [t sy
- 2j [ (8 +m2/2 + a) — yB] Kz, y) f (v)dy
[Ka* 1(e) = [ k(.0) [—jy n 2ay] F()dy

i f [28 — y (B +m2/2 — )| k(z,y) f (v)dy

= WM[&*KJ‘](?E)

where we used o? = (8 +m?/2)? — 82. Taking f = vy we obtain immediately
that v; is a sequence of eigenvectors for the eigenvalues A;. Since \; # A
Vj # k and K* = K the eigenvectors are orthogonal

Aj(vj, o) = (Kvj,vg) = (vj, Kvg) = Ae(vj, vg).
More precisely, using [a,a*] = 4ald and

[0, (a%)] = [1,0"](@*)" " +a*[a, (a*)"~] = da(a*)* " ra* [a, (a*)F!] = dak(a*)"!
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we obtain '
(40)’
(vj, V) = Gk i

Finally we remark that v;(z) = p; (z)e—o”

j and

where p;(x) is a polynomial of order

- 2
fe 2o pj(x)pe(z) = ¢;djk,
where c¢; is some positive constant. Precisely

. 2

2 2 i oaz? .
lgall pj(a) = 2™ (a*Y e = 2 (L) e = (20)"2Hj(2/2a)

where we used
(=i +20) e = e (=)

and A , ‘ ,
Hia) = (<) e =% () e 7

is the Hermite polynomial of order j. Since Hermite polynomials span Ls(R),
by Th. [3.3.11| above the family {v;},en contains all eigenvectors. O

2.4 Conclusions, remarks

In this chapter we have considered the one dimensional version of two models:
the Ising model and the harmonic cristal. In both cases we have applied the
transfer matrix approach to study the infinite volume limit. Below is a summary
of the results we obtained.

2.4.1 Hamiltonians

The starting hamiltonians for the Ising (resp. harmonic cristal) model are

L—1 L
h
H/I\(U)=— Z Uj0j+1—B Z aj, aeQA={1,—1}A
j=-L j=—L
L—1

L
HY(9) = ), (¢ — 1)’ +m? D 83, peQy =R

j=L j=L

Boundary conditions. In the Ising case we have considered three types of
boudary conditions:
o: HX(U)=HI(O')—J((T_L(?_L_1+O'L5'L+1)
periodic: HY (o) = H (o) — Jopo_1,
free: H/<7'66(0) = H!(0).
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The corresponding boundary conditions in the case of the harmonic cristal are

Dirichlet: HP(¢) = HM(¢) + ¢%, + 02 = ¢r41=¢_r_1=0
periodic: HY(¢) = HY (6) + (¢ — -1)?
Neuman:  HY(¢) = H"" () — [V¢]aa = 0.

2.4.2 Partition function

In both models we wrote the partition function in terms of a transfer operator.
As a result

. Inz{
A Al

lim 227 iy =Llln——T o= 4/m2p+
Lo 1Al 0= 73 a+(B+m?/2)’ - 4

where A\; (resp. Ag) is the largest eigenvalue of the transfer matrix T (resp.
the transfer operator K). These limits are independent from the boundary
conditions.

=1In\; = In[e® coshh + \/(eﬁ sinh h)? + e—28]

2.4.3 Magnetization

For the magnetization we obtained

. +1 h— 4w
Jim Balioy) = (00, 5) = 0 - { 5 370
i Bl =0

: 2
2, Balol =1

0 m — o0

. 2 2 1
Lll_I)IAILEA[(z)j]:('UOaE 00)24(1_){ +00 m—0

In both cases the result is independent from the position j and from the bound-
ary conditions. Note that though the averages spin is always finite, the average
®? diverges as m — 0, reflecting the fact that ¢; is an unbounded variable and
the fluctuations become very large when m is small.

2.4.4 Correlations

We have considered only two point correlations functions:

lim (E EA[oi]E Cem e ! ’ b
Ll~I>n”/;( aloioj] = Exloi]Ealo;]) = Ce™ % ’g_lni—; m h—0

. 1 _ _ 1 b=l 1 0 m — o0
Lh—{n/ (Eal@igj] — EaldilEnld)]) < gg¢” ¢ 1€ = ln45+m;/2+a _){ +0 m—0
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Note that the correlation length ¢ is always finite in the Ising model (unless
B — o). On the contrary, £ diverges as m — 0 in the harmonic cristal. Since
the prefactor 1/« also diverges it is better to consider the expression

i (Eal9i05] — EA[GJEA[S;]) _ —tizat
= E[¢?]EA[67]

It is important to remark that the divergent quantities in the harmonic cristal
appear for any choice of the boundary conditions.

2.4.5 Generalizations

The transfer matrix approach may be applied to much more general situations.
One may for example replace the quadratic potential m?¢? by some function
V(¢) such that

o V(6) > 0 as o] > 0
e V(0) =0 and V has a unique minimum at ¢ = 0.

These conditions garantee that V(¢) = m2¢? + O(¢*) near ¢ = 0. Then when
B is large the transfer matrix is well approximated (see [?, Ch. 5] for more
details) by the harmonic transfer matrix we already studied. Some examples of
such potential are V(¢) = ¢* or V(¢) = In(1 + ¢?). Note that in the second
example we cannot study high order correlation functions since Ea[¢!'] since
the log-potential does not garantee that the integral remains finite. More work
is needed when the potential V' (¢) has several minima.

When the transfer matrix is real but not symmetrix, or complex but not
self-adjoint, then most of the theorems we used do not apply! Situations when
one can still do something are

e the transfer operator K is real with (non strictly) positive kernel (not
necessarily symmetric) such that some power of K has strictly positive
kernel.

e the transfer operator is complex and normal.
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Chapter 3

Higher dimensional
problems

In one dimension, the transfer matrix approach garantees the existence of the
infinite volume limit, as long as the transfer operator is regular enough. When
in addition we can show that this operator is “near” to the harmonic cristal,
then we can obtain precise estimates of the limit.

In dimension larger than one, the transfer matrix approach does not apply
but as in the 1d case, many techniques use some kind of comparison with the
harmonic cristal. We will then start the chapter reviewing the results we ob-
tained for the harmonic cristal in d = 1 with a different approach that, contrary
to the transfer matrix, can be directly generalized to any dimension.

3.1 Gaussian integrals in 1d

3.1.1 The harmonic cristal as a gaussian integral

The Hamiltonian for the harmonic cristal we introduced in the previous chapter
can be written as a quadratic form

L—-1 L

PG = 0 AL = S 6o = S Bl D mih

J,k=—L j=—L j=—

= (¢a _ﬁAAQS) + (¢am21A¢)v

where (¢, Y)a = Zfzi 1 ®j1; is the real euclidean scalar product on A and —Ax
is the discrete Laplacian defined by

-1 li—jl=1

ZkeA, [k—j|=1 L i=j

(—Ap)ij = {

39
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Inserting the boundary conditions the Hamiltonian becomes

Dirichlet: — H(¢) = HY(¢) + ¢2 1 + ¢7 = (¢, [-BAY +m*1]¢)
periodic:  HE(¢) = HA" () + (¢ — 6-1)° = (&, [~BALT + mP14]9)
Neuman:  HY(6) = H" (9) = (¢, [-BAY + m*L]¢)

where
1 -1 0 0 2 -1 0 0
AN _ -1 2 -1 0 _AD _ -1 2 -1 0
Av = 0 -1 2 -1 AT = 0 -1 2 -1
0 0 -1 1 0 0 -1 2
2 -1 0 -1
-1 2 -1 0
_ APer _
A 0 -1 2 -1
—1 0 -1 2
Note that

0 < (f, =AY ) < (f,=APf) < 2(f, —APf)

where in the last inequality we used 2(f2; + f#) = (f_r — f-1)*. Moreover the
constant vector is in the kernel of both AN and APer

—ANf= AP =0 if f; = fVj,
while (f, —AP f) > 0Vf € RA. Therefore only the meaure duf(¢) with Dirichlet
boundary conditions is well defined also for m = 0.
3.1.2 Gaussian integrals and correlations
In the following we will need some basic facts about gaussian meaures.

Lemma 10 Let A be a N x N real symmetric matriz such that A > 0 as a
quadratic form. Let d¢p = vazl de; the Lebesgue measure on RYN. Then

_1
J e—3(0:49) 4y _ (QW)N/Q’ Spw € 2(¢’f¢)¢j1¢j2d¢ _ A1
RN \/det A SRN ez (&40 d¢ i

More generally let j1,...,5, € {1,..., N} n (not necessarily different) points.
Then

e A e Lo
Sev e~ 3(6,A¢) 4 2p H(Q»B)EP A;ajﬁ n=2m

where P is a pairing of the set the set {1,...,2m}, i.e. a partition into m subsets
of size 2.

Example
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Proof Since A is real and symmetric, there exist an real orthogonal matrix U
(Ut = U™') and a real diagonal matrix A such that A = U'AU and

f @*%(¢,A¢)d¢ _ e’%(U¢’5‘U¢)d¢ _ 67%(&)’5‘@|th U*1|d(,z~$
RN RN RN

)N/ o) N/2
_HJB PNdidg, = 4% )\i_(\Q/d.)stA'

where we performed the change of variable ¢ = U¢ and we used |detU| = 1.
To prove the other relation we may use integration by parts. We have

b, e~ F(6:49) ZAm T3 ($A49),

Inserting this relation in the integral we obtain

N
—3AD) y 4 g -1 0~ i(hAP
JRNe (040 . & dep = ;AJ’”’JRN s 55-€ 5(6,49) g

N
- —1(p,A¢) & B i (oas
= Z Jit J‘ N € 2 ¢)@¢sz¢ A]1]2 JRN e 2(¢ )d¢

The proof for the general case is similar. Alternatively one may use the gener-
ating function S : {fJ}é\[:1 - R
S]RN 67%(¢’A¢)€(¢’f)d¢
fon € 1@A0)dg
— A7 ], A[p— A1
AT S]RNB 3([¢ 1Al f])d¢ _ A
fon 2949 dg
Since S is smooth in f; Vj we have
S e=2(0A) g b d _ on
S]RN 6_%(¢7A¢')d¢ 6fj1 s 6fjn

S(f) =

S(f))f=0-

3.1.3 Partition function and correlations

With these formulas we can now compute the partition function and correlation
functions for the harmonic cristal in d = 1

2041
Z[(\bAC.):J‘ “BH(9) g — f (6 Ar0)a g = \/ﬁ
c. e ¢7AA¢ ¢2 d(b -
B[] = 4 = 54 e

Se (¢, A89)a dg

& AnD)A d
[¢x¢y] Sese ¢,AA¢¢ (qu ¢ - %(Axl)xy
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where the matrix Aj depends on the boundary conditions. The problem is then
converted in the study of the determinant and inverse of Ay as A — Z.

3.1.4 Finite volume computation: periodic boundary con-
ditions

In the case of periodic boundary conditions we can compute the eigenvalues and
eigenvectors of the discrete Laplacian by taking the Fourier transform.
Discrete Fourier transform

Any function f € R? can be seen as a periodic function of period T' = 2L + 1,
ie. feRZ with f(x +nT) = f(x) Vn € Z. Let Pr(Z) the corresponding set of
functions.

Definition 1 (Discrete Fourier transform) The discrete Fourier transform
s a linear functional

F: PT(Z) —>PT(Z)

L
f — F[fl(n) = f(n) =1 D, flz)e *n
x=—1L
wherene€ A ={—L,...,L}, k, = 22L7rf1 and ci > 0 is a normalization constant.
This functional is invertible and
F-L. PT(Z) — PT(Z)
L
g - Fgl@) = g(z) =ca Y. glhn)et "
n=—1L

where the constants c1,co > 0 must satisfy cica = ﬁ

There are several possible conventions. One may take ¢; = ¢co = (2L + 1)*1/2,

orcy =1and cy = (2L +1)7 L.
With these definitions we have the following properties

Convolution. Let f,g € Pr(Z). The (discrete) convolution is defined by

L

frglx)= Y] fla—y)gy)
The corresponding Fourier transform is

[F(f # 9)l(kn) = e1e3 (2L + 1) f (k)

Na)Y
—
ol
S
~—
Il
-
—
ol
3
~—
Na)Y
—
ol
3
~

Then
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Scalar product. Let f, g€ Pr(Z). We consider the real scalar product on A
(f.9) = X*__, f(@)g(x). Then we have

L

(f.9) = (2L +1) Z

»—tw‘ =

SPAC

Fourier transform of the Laplacian. Note that the matrix —AL" is trans-
lation invariant i.e.

(=AX ey = (ALK )z—yoF(jz = y])

since the value of this matrix element depends only on the distance |z —y/|, then
it acts as a convolution

(AR 1) = S (=AF" )0y fly) = [F + F1():
The Fourier transform is then
FI=A) 1) = [FF # )] (kn) = ~F (ko) f (k).

C1

Therefore, by translation invariance the Laplacian is a diagonal matrix in Fourier
space and the eigenvalues are given by

1 -
An = —F(ky,
C1
To compute the eigenvalues
1. L : 4
—F(ky) = Z eT (AR, o = [2 - et _ elk“] = 2[1 — cos(ky)]
! r=—L

Note that by symmetry there are L + 1 distinct eigenvalues: A, = 2[1 —cos(k,)]
with n = 1, .., L each of multiplicity 2 and Ay = 0 of multiplicity 1.
Let M = —BAR*" + m2I,. From above we have

——

[Mf](kn) = 3 M, f (k) = (k) f(kn) = [u-f1(kn) — where p(ky) = 26(1—cos ky)+m®.

Hence Mknkm = Opmit(kn)/c1 is a diagonal matrix and

1 ~
k).
Therefore

) =Y My f(y) = F M7 () = F ' " - fl(@)
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As a conclusion we obtain

L
My = F Hu )z —y) = cc Z —#(,ﬁn)em"(“y)
n=—L
L L

_ 1 Z 1 gikn(z—y) _ _1 Z ethn(@—y)
T 2L+1 wikn) T 2L+1 2B(1—cos kyn)+m?2 "
n=—1L n=—1L

This result is independent from the choice of ¢y, cs.

Remark. The arguments above are false if we take Dirichlet or Neuman
boundary conditions.

Finite volume partition function and correlations

With the definitions above we can now explicitely compute some quantities.
Since we are considering periodic boundary conditions we have Ay = M. More-
over each eigenvalue except 1(0) has multiplicity 2, then

L
det M = p(0) H p(kn)? = m® 1_[ pu(kn)?.

n=1 n=1

Then

L
(per) Inm
2L1+1 InZ7"” =Iny/m — 2L+1 2L1+1 Z In pu(kn)
n=1

L
er - 1
EX" (03] =3(M™aw = gz + ﬁn; (k)
- B L cos(kn(z — 1))
R [0aty] =3 (M ™)y = gy + 17 2 11(kn)

where |A| = 2L + 1 and we used k_,, = —k,, and p(k,) = pu(—kn).

Some elementary estimates on the two point function: spectral gap
Contrary to the continuous Laplacian, the discrete Laplacian has a spectral gap,

pu(kn) — p(ko) = 28(1 — cos(5757)) = O(L™?) >0 Vn #0.

Using this fact we can prove the following estimates.
Lemma 11 There exist constants C1,Co such that
er er CH

|Ei [¢w¢y]__Ei [¢w¢x“ < ;;

|E1A€T[¢w¢u] - Eﬁe7-[¢w¢y+l]| < Oy (3'1-2)
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for any choice of m, |A|, x and y. The factor m~" is due to the properties of
the one dimensional Laplacian and cannot be avoided. Precisely, there exist two
constants K1, Ko such that

K1 K2

Br P [g, 0] — b | < 22 1.
m [¢ ¢ ] 2m?2|A| m (3 3)

for any choice of m and |A|. The points on the boundary play a special role and
the corresponding two point function has nicer a priori bounds. Precisely there
exists a constant Cs such that

Cs

m |BX" [¢2¢+L] — ﬁzw‘ ST (3.1.4)

for any choice of m A and x.

Proof.

~

[BX" [020y] — BX [29:]] =

Z [cos(kn(z—y))—1] (oc y —1]

n:l

L
< Z 25(1 cosk71 +m?2

2 1 2 1
S A Z 2B(1—cos kn)+m? + TAT Z 2B(1—cos k) +m?
1<n<L/10
To estimate the second sum notice that
1 —cos(k,) = 1—cosm/10 + O(L™') = Const YV L/10<n < L.

Then

2 1 2L I
TA] A —cos k) rm? S 3541 SUP 33A—cosk T S Const.
L/10<n<L L/10<n<L

To estimate the first sum notice that we can find a small number p > 0 such
that
1 — cos(ky) = pk? vV n< L/10.

Then

~

E

2, mrwEEeE S ) e
2B(1—coskyn)+m?2 = 7 |A 2Bpk2+m?
< 1<n<L/10

br b V28p
1 1 m
< = _— =
S LL 2Bpk2+m? dk mﬂ'\/26 o255 k2+1dk
1 fratt Const
= m[arctan(k‘)] ay 2Bp < m
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where we set ay, = zz%v by = %OLA). The estimate (3.1.3]) is proved in the
same way. To obtain the lower bound notice that 1 — cos(k,) < pk2 for some
constant p for all 1 < n < L/10 and 1 —cos(ky,) < 2 for all 0 < n < L. To prove
(13.1.2))

L
B [6000] — ER020y0] = iy 3 Tetiatemigpniateml
L
Z cos(kn (z—y))[1—cos(ky)]—sin(k, (z—y)) sin(k,,)
— #(kn)
Then
2 [ c | sin(kn (z—y)) sin(kn)|
er er 1—cos sin(k, (x—y)) sin(k,,
IEX" [¢20y] — EX" [ dy+1]] < Z_: erﬁ ) ST —cos(ka]) 1 s
2 (kn)|
S 2801 2L+1 Z 52“[13 e CQJOSy blimz

To estimate the last term we break it as before in two sums >, - and >.- ;.
where

nzm A<z —yl« L= |k| <L, and |ko(z—y)|<E Vn<a

The last sum is bounded by a constant. The first sum is bounded by

K k3 lo—yl lz—y|n
A D mamrrar SKGT <K

1<n<n

where K and K are some constants. Finally to prove (3.1.4) note that

er ky, I o (o _
Ei [(bw(bL]_m‘:% # :|T1\ %
n=1
< L
B % Z Fn)| = ﬁ Z f(kan) = fkzn-1)| < ﬁ Z |f(kny1) — f(kn)|-
n=1 1<n<L/2 =
where o
cos|k(z—1/2
f(k) = 281 _cos(k))tm?"
Now

f(kn+1) - f(kn) = fl(k*)éka kn < k* < kn+17 ok = 2511~
There exist constants Ci(z, 8), Ca(x, 5) such that

, | sin(k(z —1/2))| | cos(k(x —1/2))||sin(k
[F R < [28(1 — cos(k)) + m?] + [28(1 — cos(k)) + m?
<{ Ci(z, B) 7|T;c|

10
C2(£aﬂ) [2ﬁpk§+m2 + [2Bpk2k+m2]2:| VO< k< iE]

)|
P

<k<mw
s
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Inserting these bounds in the sum above we obtain

L 7/10|x|
ﬁ Z |f(kn+1) - f(kn)| S Cl(x; 6)51{ + CQ(I,,B)(S]CJ,O [2ﬂpk§+’m2 + [2ﬂpk2k+m2]2:| dk
n=1

= O(L™") + 0L ")|Inm| + O (77) = 0 (7z) -

m2L m mL

This proves the result.
]

3.1.5 Infinite volume limit for periodic boundary condi-
tions

When L — oo the Riemann sums become integrals

L
(per) _ Inm
2L1+1 InZy7"” =In/m — 2L+1 2L1+1 Z In p(kn)
n=1

= Lo InNT— 5= J In[26(1 — cos k) + m?]dk.
0

L
1 T 1
EX" (03] = sy + a1 #LJ dk
A [¢I] 2m|A| | lngl ’u(k”) TLo% 3 0 25(1 —COSk) + m?2
L
cos(kn(z — y))
EX"[¢cdy] = s + a7
A Y 2m|A| | |T;1 ,U(kn)
., N J~7r COS(k(LL‘ _ y)) U — N T 6ik(a?*y) i
~% 2w )0 23(1 — cos k) + m?2 am ) 2B(1 — cos k) + m?2
Lemma 12 The limits obtained above coincide with the results we obtained by
transfer matrix approach. In particular the two-point correlations are given by
lim EX"[¢2] = 1
Lo A z 40[
1
. per _ |z|
A By [¢ady] = =~
where
2 2 2
a=(1+2)-\/(1+%) -1
Proof. The two point function is symmetric under exchange of  and y so we
can always choose x —y = 0.
™ ik(z—y) ) STy dz
lim E2" [, ZLJ‘ e dk=jf dz
Prretia) [020y] = 37 .+ 28(1 = cos k) + m? A7 ) B2 —z—z7)+m? 2

z—y
i z

dz = =i J A
= = — — dz
AT o B2z — 22 — 1) + m2z A8 Jo (2 — 21)(22 — 2)
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where C' = {z = ¢ € C|6 € [0,2n[} is the circle of radius 1 and

p =(1+M—2)— (1+m—2)2—1=(1+m—2)—2<1
1 23 28 28 B ’

and a = \/(6 +m?2/2)2 — 52 was introduced in Chapter 2. Since z —y > 0 the
function inside the integral is holomorphic on the whole plane C except at the
two points z = z1, 2z where it has a simple pole. Therefore

. per _—i2mi 2TV i le—y]
JLIL%EA [¢z¢y]— AP 29 — 21 40421

3.2 (Gaussian integrals is d > 1.

3.2.1 The harmonic cristal in d > 1.

For d > 1 we consider the cube Ay = {—L,..., L}%. The set of possible config-
urations is now Q5 = {¢ : A —> R}. The energy associated to a configuration
is

BHYO(9) = ) B(o; —)> + Y. m26? + FO)(¢)

j~keA JeA
where j ~ k is ||j — k| = 1 (with the euclidian norm |z|* = Zzzl x?) and

D e Bl — ¢por)? periodic b.c.

lz=z">1]2—=2"|p=1

F(b.c)((b) = Ziem,zhe/\c ﬂ(@bz - Qf)z')iz,:o = Z]E(‘AthEAC 6¢§ Dirichlet b.c.
22 =1 z—z'|=1

Neuman b.c.

where |z — 2’|, is the norm on the periodic torus Z?/Ay. All these expressions
can be written as quadratic forms

BH) (¢) = (0, AV g), AV = A 4 m?1d,.

where —A, is the generalization of the discrete Laplacian to dimension d > 1.
The formulas for Gaussian integrals generalize directly to any dimension. In
particular

bc be)y —
EV)[do0,] = L(AV))7L
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3.2.2 Periodic boundary conditions

In the case of periodic boundary conditions we can apply discrete Fourier trans-
form (as in d = 1) to prove

ei(knﬂ(mfy))

28 Zﬁzl(l — coskh) +m?

EXDN) [Pay] = gméw + ﬁ Z

nen

n#0
where n = (ny,...nq) € A, k, = (kL,... k) and k? = 2221"1 By the same
arguments we used in d = 1 we can show that for small m
O(k) d=1
(Ag\pe'f));; _ m21|A|‘ =4 O(|lnm|) d=2 (3.2.5)
o(1) d=3

the main reason being that for small n ie |n| < L/10 the Fourier sum can be
approximated by the integral

/10 kdfl

1 ,[ 1
= ~ —d%k = Oy f ———dk.
. méuo 2830 (1—coskf) +m?  Jppg<nsio [K]? +m? o K +m?

This integral is linearly divergent in d = 1, log divergent in d = 2 and bounded
ind>3.

Infinite volume

Asin d =1 when L — o0 and m is kept fixed the Riemann sum converges to
an integral

i(k,(z—y))
. (per) _ 1 €
Jim ES[0:0,] = 5o

dk.
2(2m)? J[—w,n]d 26 Zzzl(l — coskP) +m?

With some extra work one can show that the limit exists also if we let m — 0
and L — oo simultaneously as long as mL — 00. Precisely we have

. (per) BT . (per)
o lmER [0200] = i, fitg, c(m)En [6001]
mL—

where
m d=1
efm)=1+ |lnm| d=2
1 d=>3

To prove this result one has to compare the Riemann sum with the integral.
The difference can be expressed as sum over gradients f(k) — f(k,) which in
turn give some decay improvement by the same arguments we used to prove eq.
(3.1.4).
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3.2.3 Existence and uniqueness of the thermodynamic limit.

Theorem 4 The thermodynamic limit for the 2 point correlation function
per m. [Pxty] exists Vd = 1 and is independent of the boundary conditions:

T [E@er (62641 ~ ER u[6:0,1] = Jim [EX5)[0.6,] X, [6:0,1] = 0,

for any fited m > 0. This remains true also is we let m — 0 and L — o
simultaneously with mL — oo0. Precisely

dimom) [BY[006,] —ER u[000,]] = Tim c(m) [EQ5 [620,] — BN, [620,]] =0
mL >0 mL—x

Proof. Existence follows directly from the results of the previous section
in the case of periodic boundary conditions. To prove uniqueness let MP =
—BAR + m? and MY = —BAY + m? and M = —BAR” + m? the matrices
corresponding to Dirichlet, Neuman and periodic boundary conditions. We
remark that MP and M differ only on the boundary of A. The same is true for
MV . Precisely

MP=M+X, MVN=M+X

where
Xa:y = Z /8[6I zéy,z’ + 6az,z’6y,z]a
z,2'€dA
[z=2"|>1]z—2"] =1
Xzy = Z B[dx,z(sy,z’ + 61,2’5%2 - 51:#25%2 - 6m,z’5y,z’]~

z,z'€dN
lz=2">1|]z—="[,=1

For any two matrices A and B (with A and A + B invertible) we have
(A+B)'—A'=—(A+B)'BA".
Applying the relation above

(MP)z) = My} = (M + X)) = M| ==Y (M+ X)X M,

zz!

—— Y B[Ptz + (P |
1S o 1 2=

(MN) M = (M +X)ac M:cyl = _Z(M"_X);zl)zzz'M;’;

== BN = M) M) - Mz

z,z'eéA
lz=2"|>1]2—2"][,=1
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Case of fixed mass. By Combes-Thomas estimate (see the next subsection)
there exists a constant fi,, ¢ that depends only on m and d such that, for any
boundary condition
bep—1 2 —|o—y|m,
(M) | < et

uniformly in the volume. Then

d—
|(MD);y1 _ Mx_y1| < %e—um,@ 10 0

for some constant C'. The same holds for M.

Case of vanishing mass with Dirichlet b.c. For m small the factor u,, ~
m? so the Combes-Thomas estimate gives a decay in Lm? which is not enough
to prove the convergence. By matrix-tree thorem (see the next subsection) we
can prove

(MP),0 20 Vz,yel, and > (MP),} < VeeAl

Ty
zEON

Moreover, by Fourier analysis (see eq. (3.2.5]) above) one can show that

—1
c(m) | My, | —>n0.0-2 0
mL—w

Putting together these estimates

c(m) |(MD);y1 — M;yl <p Z (MD);Z1 ¢(m) sup |Mz_yl| —me0,1—0 0.

2€0A z€0A mlL—w

3.2.4 Combes-Thomas estimate

Theorem 5 (Combes-Thomas) LetT be a finite or countable set, M =
T + U a self-adjoint operator on 1*>(T), with U an arbitrary diagonal operator
and T an off-diagonal operator. Let |x — y| the distance in I'. If there ezists a
parameter n > 0 such that

sup Z |Tpyle® ¥ = S < o0

zel yel'
then for any E outside the spectrum of M with dist{M,E} = A >0

An
A+2S°

2
(M - E);}| < Ze—”‘ﬂ”—yl, with =

Proof. Let e, € [*(T') the function defined by e, (y) = d,—,, then

(M — E)gy = (e, (M — E)7"ey).
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Let R :13(T') — [*(T") the multiplication operator defined by
[Rf](y) = """ f(y),  where |z — y|y = min{|e -y, N}.

The parameter N makes R a bounded operator also when I" is a countable set.
At the end of the proof, we will take N to infinity. Then

(M = E)zy e!*=v = (e,, (M — E)™'e,) e"l"7¥I¥ = (R7'e,, (M —E)™" Re,)
_ _ _ 1
= (s, R (M —E) 'Rey) = (es,[R"'(M—E)R]
Then

ey)

1 1
M — E)71| erlz—vly < -
(=B e =i =m ==l
where we used R™!UR = U. The kernel of [R™1TR — T is given by k(z,y)

[R'TR - T|f ZT [e” |z=aly— Iy~ E|N>—1] £(2)

=Zk y,2)f

Since ||z — z|§ — |y — z|n| < |y — 2|n We have
‘emz—m—w—xm) _ 1‘ < max [(emz—ym —1),(1— e—mz—ym)]
= etlz—uly _ 1.

Then the kernel k(y, z) satisfies

sup 3 [k(y, 2)| = sup Y k(y, 2)| < sup ) [Tye] (e oIy —1)
Yy 2 z Y y 3
< I:SuP 6*77|u| <6M|u| _ 1):| SUPZ |Tyz|6'r]\zfy|N
u Yy >

< S (U)f < S

n—p \ n n—p
since i < n. Then by the Schur’s bound we have

I[RT'TR-TJ| < £ = 5 since = 525z
On the other hand

I[M = Efll = Alf] V[ el(I).
With these bounds we obtain
1 2

< “
— B TR T B S A
infy I

H [R—lTRf%“]Jr[MfE] H =

since
IR 'TR—T\f +[M — Elf| = |[[R"'TR - T\f| - |[[M — E]f||.

These bounds do not depend on the N, so we can take N — oo. This completes
the proof. m
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Application of Combes-Thomas: bound on the two point function.

Let Ay = —BAX)'C) + m?I,. For any choice of the boundary conditions we can
write
AA =T+ U, where |Tx7y| = ﬁd‘z,m:l,

where |z — y| is the euclidean norm in Z?. In the case of periodic boundary
conditions |z —y| is the euclidean norm on the torus Z¢/A . Moreover ||A[ > m?
and

DIV IT yle™ ¥ < 2dBe” = S < o0

Yy z
for any choice of 7 > 0 and for any choice of the boundary conditions. Then we
can apply Combes-Thomas estimate with £ = 0

1

b.c. _ e e
‘EE\ )[¢z¢y]‘=§|(AA1)xy| < Lyermleyl
where )
mon
Hm = 107 & ddBen (3.2.6)

and 1 > 0 is arbitrary. This bound holds uniformly in the volume A and for
any dimension d > 1.

3.2.5 Matrix-tree theorem

Let A be a finite set of points. Let Ex = {(¢,7)| 7,7 € A,7 # j} be the set un
undirected edges ¢ = (i,7) = (j,4) on A. For each edge e € E5 we denote its
endpoints by e, je.

Definition 2 A subset E c E\ of edges forms a loop (cycle) if we can order
its edges E = (e1,...,epn) such that ic, = jo,_,, Yl =2,...n and i¢; = jo, -

Definition 3 A forest F on A is a subset of Ex with no cycle. Let F[A] be
the set of forests on A.

Definition 4 A spanning tree T on A is a forest on A such that for each pair
x,y € A there exists a path in T connecting x toy. Precisely there exists a subset
v, = (e1,...en) C T such that ic, = x, jeo, =y and ic, = je,_, VI =2,...,n.

Characterization of a forest. A forest F' can be uniquely determined by
the following information.

1. We fix a partition P of the set A.
2. Inside each element X of the partition we choose a spanning tree.

The forest is then obtained taking the union over the spanning trees. Note
that this implies there is no edge connecting points in different elements of the
partition. On the contrary any two points inside X € P are connected by a path
in the forest. The elements X € P are also called connected components of the
forest. For each forest F' we denote by P(F) the corresponding partition.
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Theorem 6 (matrix-tree) Let M be a N x N symmetric invertible ma-
triz (not necessarily positive or real). Let A = {1,...,N}. Then

det M= > [[l-Mi;] ] [D B

FeF[A] eeF XeP(F) reX
My det M = > [][-Mi,;.] H [ B/]
FeF,y[A] e€F XeP(F),xz¢X reX

where

BT=ZMJ

jeA
and Fyy[A] is the set of forests such that x and y belong to the same connected
component. Alternatively one may write

dwrr= ¥ 11 3 [, 5

PeP[A] XeP | TeT[X] eeT reX
MpldetM = ) > TIEMiad | T 20 TI-Miadl)) B
PeP,y[A] | TET[X,] eeT ;(g)l; TeT[X] eeT reX

where P[A] is the set partitions of A, T[X] the set of spanning trees on X,
and finally Py, [A] is the set of partitions such that © and y belong to the same
element of the partition: this special element of the partition is denoted by X,.

Remark. The general matrix-tree theorem applies also to non-symmetric and
non invertible matrices, with a slight modification in the definitions.
With these definitions we can prove the following result.

Lemma 13 Let A = {—L,..., L} and Ay = —BAY +m?Ix a matriz on A x A,
where —AR is the discrete Laplacian with Dirichlet boundary conditions. Then

0< (A ey  Va,yeA (3.2.7)

and )
DA<z VaeA (3.2.8)

2ECA B

Proof. Applying the matrix-tree theorem we can write

ey T [Srerpe Heerl=41.3.0) Txgg { Srerpa eerl =405 [Srex B
A Jzy =

Sperp Hixer {Srerp eerl=4is S ex B

Note that —A,_j, = B when i, ~ je, i.e |ic — je| = 1 and zero otherwise (since
ie # je for any edge e in the forest). Then only nearest neighbor edges give
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a non zero contribution. Let P¢[A] the set of partitions of A into connected
components and T[X] the set of trees on X made only of nearest neighbor pairs
i ~ j. Finally note that

B, =) Aj, =m® + fd,
jeA

where

et 3 d, =0 if r e A\OA
dr =#{j€ A°| [j —r|=1} so {dre{l,...,d} if r € OA.

Then Y, . B, = m?|X| + Bdx, where

dx = > dp,  hence |X n0A|<dx <d|X noA|.
reX

Inserting all this we obtain

_ Y pepe, [A] [ZTE%[X,T] B‘Tl] H;;; {ZTE%[X] AT m?| X | + 5dX]}

Y pepeia] [ xer {ZTef’[X] BITH [m?|X | + 5(1){]}

(Ax Dy

This expression is manifestly positive hence (3.2.7). Let

w(X) = [m?X|+pdx] Y, BT

TeT[X]

Then
_ HXEP w(X)
o) 2pepeia) I Lxep w(X)

is a probability measure on P¢[A] and (Axl)w can be expressed as an average

AxNey = X, P(P)ppiraan]
PePe, [A]

To prove (3.2.8)) we replace y by z and sum over all z € A

D@ e =2 D) PP perxaEa

2ECA z€@A PePS[A]
B 1 _ |XzndA]
= 2 Y MPextmaa = Y PP e S
PePE,,\[A] 26X nOA PePZ A [A]

since dx, > | X, n 0A|. This ends the proof. m

1
B
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3.3 Perturbation around a gaussian integral

3.3.1 The O(n) model

Let A = {—L,...,L}* a cube inside Z¢. To each lattice point j we associate a
spin S; € S,, taking values in the unit n—dimensional sphere. The three main
examples are

1. n = 1: in this case S; = +1 and we obtain the Ising model;

2. n = 2: the spin takes values on the unit circle. This is the so called XY
(or rotator) model;

3. n = 3: the spin takes value on the sphere. This is the so called Heisenberg
model.

The space of configurations is Qy = {S: A — S,,} and the corresponding Gibbs
measure is

" (S) = [T d2a(S)) €2 Zowa Jin(55:50) g1 Xyen 55) (3.3.9)
JEA

where (.,.) is the euclidean scalar product in R™, h € R™ is the magnetic field
and Jj, is a collection of real interaction constants such that

Jik=Jr; 20V j,keA
and there exists a constant ¢ > 0 independent of the volume A such that

0< Y Jg<e VjeA
keA

One can understand this constraint by regarding Jj;, as the probability to jump
from j to k. Then }, _, Jjr = 1 since it is the probability of jumping to any
point. Finally df,, is the invariant measure on the sphere S,,, normalized to 1.
In particular

1. for the Ising model the measure is discrete: {dQ; = %Zo:il;
2. for n = 2 we can parametrize the circle by one angle: {dQ, = % 5” do;
3. for n = 3 we can parametrize the sphere by two angles: {dQ; = ﬁ 577 do Sg dfsinf.

Phenomenology and symmetries.

Since Jj; = 0 the interaction favors the configurations with spins aligned (we
have a so called “ ferromagnetic interaction”).
When h = 0 the Gibbs measure is invariant under global rotation

Sj - USJ V] U*U = Ian (3310)
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for any n > 2. In particular it is invariant under flip S; — —S; Vj (this is true
also for n = 1). Then

EY"=018;] = —ER°[S;]1 = ERC[S;,]=0Vjie A, Vn=1, Vd =1,

and we say that the average magnetization is zero (the spins are not aligned).
For general h, the finite volume magnetization Eﬁh[ﬁ > .cn Sj] is a smooth
function in each component of the vector h hence

jeA

1
im  lim E°" | =
A1—>1 zd flbl—>0 A l|A| Zsjl 0
JEA

If we invert the limits we may have two results:

1 0
. Bh 1 gh | L =
A A 0, B l|A| EZASJ] { M #0.

In the first case there is no magnetization. This means the infinite volume
measure limy _,za dua, g, recovers the flip symmetry when A — 0. In this case we
say the symmetry is restored. In the second case we have magnetization. Then
the infinite volume measure limy_,z4 dpip g, does not recover the symmetry
when h — 0. Then we say we have spontaneous symmetry breaking.

One can show that at high enough temperature (i.e. 5 small) there is never
a magnetization, since the thermal fluctuations are too strong. On the contrary
at low temperature (i.e. [ large) the forces trying to align the spins may be
strong enough to create a magnetization. In this case we say we have a phase
transition.

Mermin-Wagner: low dimensional systems.

Phase transitions are harder to observe in low dimensions. This is the con-
tent of the so called Mermin-Wagner theorem (also known a Mermin-Wagner-
Hohenberg theorem or Coleman theorem). It is a series of papers that can be
summarized in the following statement:

Continuous symmetries cannot be spontaneously broken at finite temperature
in systems with sufficiently short-range interactions in dimensions d < 2.

Application to O(n) with short range interaction.
Let us consider the O(n) model defined above with Jj;, = 1 when |j — k| =1
and Jj; = 0 otherwise. Then

du(S) = Hdﬂn(Sj) &P 2~ (55:58) o (B2 jen Sj)’
jeA
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where j ~ k means the two points are nearest neighbors in Z%. For n > 2 this
measure has a continuous symmetry at h = 0, so by Mermin-Wagner theorem
we cannot expect a magnetization (hence a phase transition) in d < 2. The
theorem does not apply to n = 1 (Ising model) since there the symmetry is
discrete (o0 — —0).

In d = 2 one may still observe a softer version of phase transition known as
Kosterlitz- Thouless transition that corresponds to a change in the decay rate of
two point correlations. More precisely

lz|
. 8,0 ) e € Tx»l1iepf«1)
Ali{%d By [505:] = { 2 T« 1(1.e.8> 1) as |z > 1.

Bk

for some constants ci,c2,&,n > 0.

3.3.2 A first example of perturbation around a Gaussian
measure: the O(2) model in d = 2

Let A = Z%/{—L,...,L}? a cube in Z? with periodic boundary conditions. The
space of configurations is Q5 = {S : A — Sz} and we consider the Gibbs measure

du(S) = [ [ da(S;) e Zomr(55:50)
JEA

where j ~ k are pairs at distance one in the torus. For this model one can prove
a Kosterlitz-Thouless transition. More precisely we have

Theorem 1 [Mc Bryan, Spencer (1977)]. For any 0 < € < 1 there exists
a Bop(€) > 0 such that for all 8 > By(e)
1
. 8.0
Alinzld [EV" [S0S:] | € —— (3.3.11)

o] 55

Theorem 2 [Frohlich, Spencer (1981)]. There exists a a Sy > 0 and a
constant ¢ > 0 such that for all 8 > By

c

lim |E?°[S,8.]| = .
Aim B [S0S0] | s

Theorem 3. There exists a a 8y > 0 such that for all 3 < 3y

||

dim ERC[S0S,]| < Cpe

In this section we will review the proof of Theorem 1. This is based on two
steps. The first is non rigorous and consists in approximating the measure by a
Gaussian integral. The second step is rigorous and consists in mimicking some
of the operations we did to compute the (non-rigorous) Gaussian approximation
in a rigorous context. The key step is a complex deformation.
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Proof of Theorem 1 (based on [Mc Bryan, Spencer]) Using polar co-
ordinates the average above can be written as

1 .
ER° [S0S.] = 7e P 2yi c0505=951) cos (6, — 6p) [ T a0,
A J[0,27]IAl jen
1
=—( I_
2ZA( ++ 1)

where the partition function is

75 = J €'sz~j/ cos(0;—0;) do.:
[0,271']|A‘ J;‘[\ !

and we defined

I, = J ef Lyt 00500 etoC=0) TTdp;, o = +1.
[0,27]1AI Jen

Preliminary heuristic arguments. Using some non rigorous arguments we
establish what kind of behavior we expect from the integrals above. Since
1 > cos(0; —6;;) = —1 and B » 1, the function exp[Scos(f; — ;)] is expo-
nentially small unless 6; — 6;; ~ 0 or 27. Inspired by this fact we perform two
approximations.

a). We take the Taylor expansion up to order 2 and neglect the remainder.
Then

B cos(0—60;1) o o=BCA) ;=5 35 ;0(0;-6,1)° _ ,—=BC(A) ;=5 (6,~A0)
where C(A) = >, ;1 is a constant independent of # and —Aj is the discrete
Laplacian on A with periodic boundary conditions.

b). We replace the interval [0, 27] by R in the integral, for each j € A.

Inserting these two approximations both in the numerator and in the partition
function above we obtain

—5(,— 10 (0p—
Ii N SRWG 2(9’ AAe)e (0\3 90) H]EAda]

“Bio_
Za Spia e72 (0= [1jen d6;

where the normalization is

_B(g.—AL
N=[ e #0-s0 T ap,.

RIAl jen

These two integrals are ill defined since —Aj is not invertible! One may give a
sensible definition of a Gaussian measure even in this situation, but since here
we are doing non rigorous arguments we ignore the problem. We introduce now
the two functions

v: A—>R a: AN—>R

: , : - 3.3.12
J = vj = djz = djo j = aj = [(=BAx) " v];. ( )
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Note that > ;v; = (1,v) =0, v € ker(—Ax)*, therefore the function « is well
defined, even if (—Ay) is not invertible. Then (6, — 6p) = (v,0) and

I, = e~ 3(a(=BAN)a) f e~ 3((0—ica),—BAN(0—ica)) H do; = ezl (=BAN)) \f
RIAI ;
JEA
where in the last step we perform the complex traslation
9j—>9j+iaaj, VjeA.
Now inserting the definition of «

(@, (=BAx)a) = (v, (=BAN)'v)

= 5 (A0 = (A0 + (A3 — (An)z]
_ 1 Z 2(1 = cos(kpx))
B(2L + 1) 2(1 = cos(kn1)) + 2(1 — cos(knz2))

’I’LEAL\O

1 1 1
= 2m1n [l [1 +0 (r Hm”)] ~ 2% In ||z |z| » 1

With these approximations we would obtain
I+ 1 1
QZA - |l‘|ﬁ

ES° [S0S.] . o> 1

Step 2. Inspired by the non rigorous arguments above we perform the follow-
ing complex translation in the integral I,:

Gj—>9j+i00[j, VjEA,

where o is defined in (3.3.12)). Remember that the definitions given in (3.3.12)
make sense even though (—A) is not invertible. The integral becomes

I, = e—((x,—ao) eﬁzj~j’ Cos(9j79]4+i(ajfaj/))eio(9z—90) H dej
[0,27]1Al jeA

In order to close the contour in the complex plane we need to add the integrals
along the paths y; = iz, z; € [0,00;] and y; = 27 + iz;, z; € [0,0a;]. By
periodicity they cancel each other. Since

cos(0;—0; +i(aj—ajr)) = cos(8;—0;) cosh(oj—ayj)—isin(f;—0; ) sinh(o; —ovjr)

after inserting absolute values we have

|Ia| < ef(azfozg)J‘ eﬁzj~j’ cos(0;—0,1) cosh(aj—ar) Hdoj
[0,27]1Al jen
< o—(0—a0) B,y [cosh(a;—a,)—1] J ¢ Zymyr x50, T ),
[0,27]1Al jeA

_ ZAe—(ax—ao)eB >t [cosh(a—ayr)—1]
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where in the second line we use
cos(8;—0;/)[cosh(a;—a;) —1]+cos(8;—0;/) < [cosh(a; —a)—1]+cos(6;—0;).

Now

1 K
A0 = (A)50] + [(FA) — (-A)ll < 5

for some constant K independent of x and A. This last inequality can be
obtained by the same kind of arguments in the Fourier sum we used to prove
the estimate in Lemma Since [ is large we can make |o; — o] as
small as we want. To complete the argument note that for any 0 < € < 1 there
exists a d(e) > 0 such that

| — | <

1+¢/2
2

where the factor 1/2 in front of € is just a convenient choice to control some
additional error terms later in the proof. From the bound above there exists a
Bo such that |o; — ajr| < 6 for all j ~ j” and for any 3 > fy. Inserting this in
our estimate we obtain

cosh(t) — 1 < 2 Yt <9

B0 15051 | < LD ¢ omtarman 8,y 2420000
¢ VAN

= ¢ (az—ao0), M2 (o, BAr)

R T 22 1n o) [1+0 (17 IIm\I)]
1

] 57

< e sEmlal _

where in the last line we use (o, — ) = (v, ), a = (—BAx)'v and we take
|z| large enough to ensure

[1+0(hg) ] = (1= e2).

This concludes the proof.

3.3.3 An example of phase transition: the mean field case
In this section we consider the O(n) model defined in (3.3.9) with non zero

magnetic field h € R™ and with interaction parameter

T = Vi, j € A.

1
A
With this choice

0< Y Jp<1l  VjeA
keA
Note that in this case we have long range interactions since Jjj, is constant for
any pair jk € A. Then the Mermin-Wagner theorem does not apply and one
may have a phase transition also in d = 2.
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Duality

The partition function in the mean field O(n) model can be reformulated as an
integral over n real variables

Lemma 14 For any dimension d > 1 and any n = 1 we have

8 8,h 1 AR 2m 3 1Al
z5 . (h) :fduA:n(S) - 5J i e AIF s @) i Ay — <|A|> ’

F,g: R*xR* —R
Z—hl?
(.h) = Fageh) = L5t — (1)
and
I Rt — Rt
t _’Jn(t) = cosht if?”L: 1
=3 SOE (sin@)"=2 cosh[t cos0]d0 if n = 2

Proof Since J;; = |A|! Vi, j we can write

8 2 A
eg ea ik (S5:8%) _ eW” Diea Sil? _ Nl J d"x e—‘QTglutze(m’ZjeA S;)
An,B JR™

Exchanging the integrals we obtain

[A
Zf,n(h) _ NAl : J ' 6—%|Iw\|2 [f 9., (S) e(m+h¢5)]

1 f " —Blz—n|? [1[ A2, (S) (x S)]lA|
= re 2 " e\™
NA,n,B n

When n = 1 we have

JdQl(S) e = Z e®? = cosh(x) = cosh(|z]).
o=+1

N

When n = 2 we have
@s) L [T jafcoso L™ jafcoso 2 (%
dQs(S) e'*?) = — e dd=—1 e d0 = = | cosh(|z| cos®)do,
2w 0 ™ Jo ™ Jo

where in the first passage we perform a rotation in order to have x parallel to
the vertical axis, then go to polar coordinates. Similarly for n > 2 we have

1 [ 2
JdQH(S) el = = ,[ (sin @)™ 2elzlcosfgp — = fz (sin )" 2 cosh(| | cos 8)d6.
T Jo T Jo

O
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Remarks. The duality reduces the problem to the study of a n variable in-
tegral (compared to nlAl variables in the initial representation). Moreover, for
large |A| the integral will be concentrated around the minimal with respect to
x of the function F,(x, k), therefore a saddle point analysis is possible.

Generating function

Using the dual representation above the average magnetization at finite volume
can be expressed as

Sgn d"a (x — R)e 1A Fros (@:h)

B:h | 1 |- 1 3 _ 1
EL llAl ZI:\SJ] = ‘A‘ahanAﬁz(h) =3 [ d CTATE @) (3.3.13)
jE n

Phase transition

Theorem The O(n) model in the mean field case has a phase transition in
any d = 1. Precisely

1 Z g |2 0 if 8 <1 (high temperature)
I Md,ﬁ,n >0

. . ghr| L
lim lim E} |A| if 8> 1 (low temperature)

h—0+ A—Zd

JEA

Proof In the following we set h > 0. By (3.3.13|) the problem can be reduced
to the rigorous saddle analysis of a n variable integral. For simplicity we will
restrict here to the case n = 1. Then

(z —h)?
2B

and the equations for the first and second derivative are

Fi(xz,h) = —Incoshz

1

azFl(x, h) = h) tanh z, aiFl(xvh) = % " (coshx)?*

B

Note that .
2F (x,h) < 3 vV, h. (3.3.14)

Case 1: 8 <1 (high temperature). In this case F} is a convex function in z

2Fy (x,h) > 952 v, h (3.3.15)

therefore Fy has only one minimum at the point xo(h) satisfying

% = tanh xg.
At h = 0 29 = 0 is a solution of this equation, therefore limj_,o zo(8,h) = 0.
By a Taylor expansion with integral remainder

Fy(2,h) = Fi(x0, h) + (@ — 20)? L (1= )62 F) (20 + H(z — x0), h) dt.
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Inserting (3.3.14) and (3.3.15) we obtain Yz, h

Fy(wo,h) + g5 (x — 20)* > Fi(w, h) > Fi(xzo, h) + 52w —20)2. (3.3.16)

28
Now we can reexpress (3.3.13|) as

_ h)e-lAlFLa ()

B.h | 1 4 _1SRd’I (x —h)e _ wo(Bh)—h

. lAzAsjl_ﬂ doe Wrsen = 5 T RGRAD,
je

where ALF 5 (@)
d _ - n, BT,
R(Ba h7 |A|) _ S]R €z (:L‘ .’L‘0)6
SR dx e*‘A‘Fn,ﬁ(Lh)

Inserting absolute values, and the upper and lower estimates from (3.3.16|) we
obtain

[A[(1=5)

— (z—w0)?
_ 28
IR(3.h A < ke P
§ dzx e~ 28 (7 0)
L NGB .
:2sodxxe 2B _ 3 2B 4
[z e 29" I VER(LB) Al
gdre
Finally
n L BA | LS| gy emh _
hlgg+ All»HZld Ea [W ;SJ] B hli%lJr g0

Case 2: f>1 (low temperature). In this case the function Fy(x,h) has two
minimum points x1(h), z2(h) satisfying

xz1(h) <0, x2(h) >0, }llin%] x2(h) = — lim z1(h) = zo(5) > 0.

h—0

At h =0 F} is symmetric in  so the two minimums are at the same height

Fl(—xo(ﬁ),()) = Fl(xO(ﬁ)’O) = F.

To see what is the approximate value of the two minimum points at h # 0, we
expand near h = 0 (remember that at the end we will take the limit & — 0)

l‘](h) = 0% + (5Jh + O(hQ), oy =-—1, oo =1.
Inserting this relation in the saddle point equation we obtain

0= azFl(xj(h)>h)
= 0,Fy(2;(0),0) + 02F1(2;(0),0) d;h + 0,0, F1(2;(0),0) h + O(h?)
= h (02F1(2;(0) 0; + 0,0, F1(2;(0),0)) + O(h?)
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since 0, F1(x;(0),0) = 0. Note that

2
92 F1(25(0),0) = 5 — orasm? =

are independent of j then

0p =02 =0= 7[,}[1(&) > 0.

Inserting these results in the expression for F; and expanding around h = 0 we
obtain

Fi(z;(h), h) = Fy(2,;(0),0) + 8, F1 (2;(0),0)5h + 8, F1(2;(0), 0)h + O(h?)

= F1(z;(0),0) — mjﬁ(o) h+O(h?) = F,, — 0 ‘roéﬁ) h + O(h?)
Then on
Fu(w1(h), h) — Fu(a(h), h) = xﬂo(ﬁ) >0, since h> 0,

and Fy has a global minimum at x2(h). As in the case 8 < 1 we extract the
contribution of the minimum

£ [k 2, Sj] = =20t 4 B3, A
jEA
where
SR d:L' |.’L' — x2|e_|A|[F1($ah)_F7n] N

|R(ﬁ7h, |A|)| < S]R dx e |AI[Fi(z,h)—Fpn] - 5

To estimate the integral in the numerator we distinguish three regions

Iy = Azl e—za(h)| <€}, Ip={z|lz]| > M}, I3 ={z||z] <M, |z—z2(h)| > €}
where € and are chosen in order to have Io N [, = J,
B2F(z,h)>c1>0 VYoel, and [Fy(z,h)— Fn]> %;& Yz € Is,

for some constant ¢y, co. It is not difficult to see that such regions exist for the
function F;. Then

_ _ _1Aley
f dz |z — xo|e” AR =Fn] SJ dz |z — zo|e” 2
11 11

[Aley

_ _ _Alea 2
,[ dx |z — xo|e” AL @R =Fn] SJ de |z —xo|le” 2"
12 12

_lalepn? _12lea 2 _IAlepn?
<e 4 Jdaz|x—x2|e T =" 1 O 14—
R V1Al

dz |z — zole” MIP@M=Ful < 901 sup [|x _ $2|67|A|[F1<z,h>me]] < e 1Ale(he, M),
I3 z€l3

(51?7(1;2)2 Sj de |.’E—[L'2|€7 5 (w7w2)2:
R
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In the third line we used |z — z2(h)| = € > 0 Yz € I3 and for some constant
€ > 0, since F(x,h) is at a finite distance from the minimum. Putting all these
bounds together we obtain an upper bound for the numerator

N=O(ﬁ).

To estimate the denominator note that

1
02F (z,h) < = Va,h
B
then
dz e WMIF @ =Ful 5 [ gy o W @—w)® _ 278
R R [A]
hence
A
Finally

. . Bh| 1 - z2(B,h)—h _ zo(B)
gy, E lA ;\SJ] T ER

This concludes the proof. O
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