Problem 1 (Maximum principle, 2+3 points).

Let $u_0 \in C_c^{\infty}(B(0,2))$ with $\operatorname{supp} u_0 \subset (B(0,2) \setminus B(0,1))$ such that $u_0 \geq 0$ and $u_0 \not\equiv 0$. Let u be the solution of the heat equation $\partial_t u - \Delta u = 0$ in $(0,\infty) \times B(0,2)$ with u = 0 on $[0,\infty) \times \partial B(0,2)$ and $u(0,x) = u_0(x)$.

- (i) Show that u(t, x) > 0 for all t > 0 and all $x \in B(0, 2)$.
- (ii) Show that there exists M > 0 and c > 0 such that $\inf_{x \in B(0,1)} u(t,x) \le M e^{-\frac{c}{t}}$.

Hint: Extend u_0 by zero to \mathbb{R}^d and let \tilde{u} be the solution of the heat equation in $[0, \infty) \times \mathbb{R}^d$ with initial datum u_0 and use the maximum principle to compare u and \tilde{u} .

Problem 2 (2+3 points).

Suppose $u, v \in C_1^2(U_T) \cap C(\overline{U}_T)$ with $u \ge v$ on Γ_T .

(i) Let $K \in R$. Show that either $u \ge v$ for every $(t, x) \in \overline{U}_T$ or there exists $(t_0, x_0) \in U_T$ depending on K with the following properties:

$$u(t_0, x_0) < v(t_0, x_0)$$

$$Du(t_0, x_0) = Dv(t_0, x_0)$$

$$\Delta u(t_0, x_0) \ge \Delta v(t_0, x_0)$$

$$\partial_t u(t_0, x_0) \le \partial_t v(t_0, x_0) - K(v(t_0, x_0) - u(t_0, x_0)).$$

Hint: Show and use that without loss of generality you may assume v = 0 and K = 0.

(ii) Let $b_i : \mathbb{R} \to \mathbb{R}$ be bounded, let $F : \mathbb{R} \to \mathbb{R}$ be Lipschitz continuous with Lipschitz constant k. Suppose that, in addition,

$$u_t \ge \Delta u + \sum_{i=1}^d b_i \partial_i u + F(u(t,x)),$$
$$v_t \le \Delta v + \sum_{i=1}^d b_i \partial_i v + F(v(t,x)).$$

Show that $u \geq v$ in \overline{U}_T .

Problem 3 (5 points).

Let $U \subset \mathbb{R}^d$ be open and bounded with smooth boundary. Suppose $0 < t_1 < T$. Set $\omega_T := (t_1, T] \times U$ and $\Gamma_T = \partial \omega_T$, Suppose $u \in C^4(U_T) \cap C^2(\overline{U}_T)$ satisfies

$$u \ge \varepsilon > 0 \quad \text{in } U_T$$
$$\partial_t u - \Delta u = 0 \quad \text{in } U_T$$
$$u\Delta u - |Du|^2 \ge -\frac{d}{2t}u^2 \quad \text{on } \Gamma_T.$$

Show that

$$\frac{\partial_t u}{u} - \frac{|Du|^2}{u^2} + \frac{d}{2t} \ge 0 \quad \text{in } \omega_T.$$

Hint: Show that there is a nonlinear heat equation for which $\Delta \log u$ is a supersolution and $-\frac{d}{2t}$ is a subsolution. Then apply Problem 2.

Problem 4 (5 points).

Let U be a bounded domain of \mathbb{R}^d with smooth boundary ∂U . We consider on U the linear, (uniformly) elliptic operator of the form

$$Lu(x) = -\sum_{i,j=1}^{d} a^{ij}(x) D_i D_j u(x) + \sum_{k=1}^{d} b_k(x) D_k u(x) + c(x) u(x)$$
(1)

with coefficients $a^{ij}, b_k, c \in C^{\infty}(\overline{U})$, with $a_{ij} = a_{ji}$ satisfying $a(x) \ge \theta \operatorname{Id}, \theta > 0, \forall x$. Show that there exist constants $\beta > 0$ and $\gamma \ge 0$ such that for all $u \in H^2_0(U)$ the following inequality holds

$$\beta \|u\|_{H^2(U)} \le (Lu, -\Delta u)_{L^2(U)} + \gamma \|u\|_{L^2(U)}^2.$$
⁽²⁾

Total: 20 points