Problem 1 (Example for an evolution triple, 1+1+1=3 points). Let

$$H := \ell^{2} = \left\{ u = (u_{n})_{n \ge 1} \ \middle| \ \sum_{n=1}^{\infty} u_{n}^{2} < \infty \right\}$$

equipped with the scalar product $(u, v)_H = \sum_{n=1}^{\infty} u_n v_n$. Let

$$V := \left\{ u = (u_n)_{n \ge 1} \left| \sum_{n=1}^{\infty} n^2 u_n^2 < \infty \right\} \right\}$$

equipped with the scalar product $(u, v)_V = \sum_{n=1}^{\infty} n^2 u_n v_n$. Moreover let

$$A := \left\{ f = (f_n)_{n \ge 1} \ \middle| \ \sum_{n=1}^{\infty} \frac{1}{n^2} f_n^2 < \infty \right\}$$

equipped with the scalar product $(u, v)_A = \sum_{n=1}^{\infty} n^{-2} u_n v_n$.

- (i) Let $i_1: V \to H$, $i_1(u) = u$ and $i_2: V \to H$, $i_2(u)_n = nu_n$. Show that i_1 and i_2 are both continuous embeddings and $i_q(V)$ is dense in H for q = 1, 2.
- (ii) Let $\Phi_H : H \to H'$ be the canonical isometric isomorphism and $J_q : H' \to V' J_q(L) = L \circ i_q$ for q = 1, 2. Determine the explicit form of $\mathcal{J}_q = J_q \circ \Phi_H \circ i_q : V \to V'$. Show that \mathcal{J}_2 is an isometric isomorphism but \mathcal{J}_1 is not.
- (iii) Show that there exists an extension $E\mathcal{J}_1: A \to V'$ of \mathcal{J}_1 which is an isometric isomorphism.

Problem 2 (Aubin-Lions-Simon, 2+8=10 points).

Let $X \subset Y \subset Z$ be Banach spaces and assume that $X \hookrightarrow Y$ is compact and $Y \hookrightarrow Z$ is continuous.

a) Show that for every $\delta > 0$ there exists $c_{\delta} > 0$ such that

$$\|x\|_{Y} \le \delta \|x\|_{X} + c_{\delta} \|x\|_{Z} \quad \text{for all } x \in X.$$

$$\tag{1}$$

Hint: Argue by contradiction and consider the sequence x_n such that

$$||x_n||_Y > \delta_0 ||x_n||_X + n ||x_n||_Z$$

for $n \geq 1$.

b) Let I = (0, T) and let for $1 \le p < \infty$

$$A_p \coloneqq \left\{ u \in L^p(I; X), u' \in L^1(I; Z) \right\}.$$

Our goal is to prove that the embedding $A_p \hookrightarrow L^p(I;Y)$ is compact.

(i) Using (1) prove that if $(v_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in $L^p(I; Z)$ and is bounded in $L^p(I; X)$ then it is also a Cauchy sequence in $L^p(I; Y)$.

Let $(u_n)_n$ be a sequence such that: 1. $(u_n)_n$ is a bounded sequence in $L^p(I; X)$; 2. $(u'_n)_n$ is a bounded sequence in $L^1(I; Z)$. Let $\theta \in C^{\infty}([0, T]; \mathbb{R})$ with $\theta(T) = 0$ and $\theta(0) = 1$. Let

$$u_n = \theta u_n + (1 - \theta)u_n =: v_n + w_n$$

Extend $v_n(t)$ to \mathbb{R}_+ setting $v_n(t) = 0$ for all t > T. Taking h > 0 fixed, split $v_n(t)$ as follows

$$v_n(t) = \frac{1}{h} \int_t^{t+h} v_n(s) ds + \frac{1}{h} \int_t^{t+h} (v_n(t) - v_n(s)) ds =: a_{n,h}(t) + b_{n,h}(t).$$

- (ii) Show that $\sup_{t>0} ||a_{n,h}(t)||_X \leq C_1(h)$ for some constant $C_1(h)$ which depends only on h. Hence $t \to a_{n,h}(t)$ takes values, independently of n, in a bounded subset of X and therefore in a compact subset of Z.
- (iii) Show that $\sup_{t>0} ||a'_{n,h}(t)||_Z \le C_2(h)$ for some constant $C_2(h)$ which depends only on h.
- (iv) Show that $||b_{n,h}||_{L^p(I;Z)} \leq Ch^{1/p}$, for some constant C > 0 (Hint: use Hölder inequality and Fubini's theorem).
- (v) For $k \ge 1$ set $h_k = 1/k$. Use Arzelà-Ascoli to extract from a_{n,h_k} a subsequence $a_{\psi(k),h_k}$ convergent in $L^p(I;Z)$ (Hint: start with h_1 fixed).
- (vi) Use (iv) and (v) to show that we can extract from $v_n = a_{n,h} + b_{n,h}$ a subsequence which is Cauchy in $L^p(I; Z)$.
- (vii) Note that a similar argument holds for w_n . Conclude that $A_p \hookrightarrow L^p(I;Y)$ is compact.

Problem 3 (A nonlinear parabolic equation I, $3+2+2^*+2 = 7+2^*$ points). We want to study the nonlinear equation

$$\partial_t u - \Delta u + u D u = f. \tag{2}$$

Let d = 4 and let $U \subset \mathbb{R}^d$ be open and bounded with smooth boundary. Let $0 < T < \infty$ and I = (0, T). Set

$$\mathcal{V} \coloneqq \{ \phi \in C_c^{\infty}(U; \mathbb{R}^d) : \operatorname{div} \phi = 0 \},\$$

let H be the closure of \mathcal{V} in $L^2(U; \mathbb{R}^d)$, let V be the closure of \mathcal{V} in $H^1(U; \mathbb{R}^d)$, i.e.,

$$V = \{ \phi \in H^1_0(U; \mathbb{R}^d) : \operatorname{div} \phi = 0 \}.$$

 Set

$$b(u, v, w) := \int_U \sum_{i,j=1}^d u_i(\partial_i v_j) w_j.$$

(i) Show that for all $u, v, w \in V$,

$$b(u, v, w) \le C \|u\|_V \|v\|_V \|w\|_V, \tag{3}$$

$$b(u, u, v) = -b(u, v, u).$$
 (4)

Hint: For (4) assume first that $u, v \in \mathcal{V}$, integrate by parts and then use (3).

- (ii) Let $f \in L^2(I; V')$, and $u_0 \in H$. Derive a reasonable notion of weak solutions to (2) for $u \in L^2(I; V)$.
- (iii*) Let $\{w_k\}$ be an orthonormal basis of H and an orthogonal basis of V. Show that there exists a T > 0 such that for all $m \in \mathbb{N}$ there exists a $u_m(t)$ of the form

$$u_m(t) \coloneqq \sum_{k=1}^m d_k^{(m)}(t) w_k$$

solving

$$(u_m(0), w_k)_H = (u_0, w_k)_H, u'_m(t)[w_k] + (Du_m(t), Dw_k)_{L^2(U)} + b(u_m(t), u_m(t), w_k) = f(t)[w_k]$$
(5)
a.e. $t \in I, \quad \forall 1 \le k \le m.$

(iv) Show that there exists a constant $0 < C < \infty$ depending only on T, f and u_0 such that

$$||u_m||_{L^2(I;V)} + ||u_m||_{L^\infty(I;H)} \le C.$$

Hint: Multiply (5) by $d_k^{(m)}(t)$ and sum over k.

Total: 20 points