Let X be a Banach space and I = (0, T) for $0 < T < \infty$.

Problem 1 (Density of simple functions in $L^p(I;X)$, $3+3+3^*$ points).

(i) Prove that the family of integrable simple functions s : I → X is dense in L^p(I; X) for 1 ≤ p < ∞. *Hint:* Find for every u ∈ L^p(I; X) a suitable sequence of simple functions approximating

u pointwise a.e. and conclude with dominated convergence.

- (ii) Let $u \in L^{\infty}(I; X)$. Assume that there exists a sequence $\{s_n\}_{n \in \mathbb{N}}$ of simple functions, such that $\lim_{n \to \infty} \|s_n - u\|_{L^{\infty}(I;X)} = 0$. Let $\tilde{I} \subset I$ be the maximal set such that $|I \setminus \tilde{I}| = 0$ and $\|s_n - u\|_{L^{\infty}(I;X)} = \sup_{t \in \tilde{I}} \|s_n(t) - u(t)\|_X$ for all $n \in \mathbb{N}$. Show that $\overline{u(\tilde{I})}$ is compact.
- (iii*) Bonus problem: Find a $u \in L^{\infty}(I; X)$ such that $\overline{u(\tilde{I})}$ is not compact for all $\tilde{I} \subset I$ such that $|I \setminus \tilde{I}| = 0$.

Problem 2 (Extension of Bochner functions, 1+2 points).

Let H be a Hilbert space and $X \hookrightarrow H \cong H' \hookrightarrow X'$ an evolution triple. Let $u \in L^2(I; X)$ with $u' \in L^2(I; X')$. For $0 < \delta < T$ define the extension $u_e : \mathbb{R} \to X$ in the following way. Extend u by reflection at 0 and T to $u^{ext} : (-\delta, T + \delta) \to X$ i.e.

$$u^{ext}(t) = \begin{cases} u(-t) & \text{for } -\delta < t < 0, \\ u(t) & \text{for } t \in [0, T], \\ u(2T - t) & \text{for } T < t < T + \delta, \\ 0 & \text{otherwise.} \end{cases}$$

Let $\phi \in C_c^{\infty}(\mathbb{R})$ such that $\phi \ge 0, \phi = 1$ in I and $\operatorname{supp} \phi \subset (-\delta, T + \delta)$. Set $u_e = \phi u^{ext}$. Prove that

- (i) $u_e \in L^2((-\delta, T + \delta); X)$ with $u = u_e$ in I and
- (ii) u_e is weakly differentiable with $u'_e \in L^2((-\delta, T + \delta); X')$ with $u'_e = u'$ in I.

Problem 3 (Lemma 2.14, 1+3 points).

Let $U \subset \mathbb{R}^d$ open bounded and $X \hookrightarrow H \cong H' \hookrightarrow X'$ our usual evolution triple with $X = H_0^1(U), H = L^2(U)$.

Let $\{w_k\}_{k\in\mathbb{N}}$ be smooth functions such that $\{w_k\}_{k\in\mathbb{N}}$ is an orthonormal basis of H and and orthogonal basis of X. Let $V_k = \operatorname{span}\{w_1, \ldots, w_k\}$ and consider the new evolution triple $X_k \hookrightarrow H_k \cong H'_k \hookrightarrow X'_k$ with $X_k = (V_k, (,)_X)$ and $H_k = (V_k, (,)_H)$.

Let i_k and J_k be the natural embeddings:

$$i_k : X_k \to X \qquad \qquad J_k : X' \to X'_k x \mapsto i_k(x) = x \qquad \qquad L \mapsto J_k(L) = L \circ i_k = L_{|X_k|}.$$

For every $h_k \in X_k$ let $L_{h_k} \in X'_k$ given by $L_{h_k}(v) = (h_k, v)_X$ for all $v \in X_k$. Define the extension

$$E_k : X'_k \to X'$$

$$L_{h_k} \mapsto E_k(L_{h_k}) \text{ with } E_k(L_{h_k})(v) = (h_k, v)_X \text{ for all } v \in X.$$

- (i) Let $u \in L^2(I; X)$ with $u' \in L^2(I; X')$. Assume $u(I) \subset X_k$. Prove that $u \in L^2(I; X_k)$ and $u' \in L^2(I; X'_k)$.
- (ii) Let $u \in L^2(I; X_k)$ with $u' \in L^2(I; X'_k)$. Prove that $i_k \circ u \in L^2(I; X)$, $(i_k \circ u)' \in L^2(I; X'_k)$ and $(i_k \circ u)' = E_k(u')$.

Problem 4 (Properties of evolution triples, 2+3+2 points).

Let *H* be a Hilbert space. Consider the evolution triple $X \hookrightarrow H \cong H' \hookrightarrow X'$. Let $T : H \to X'$ be the continuous embedding from *H* to X'.

- (i) Given $f \in X'$, show that $f \in \text{Range}(T)$ if and only if there exists a constant $a \ge 0$ such that $|f(x)| \le a ||x||_H$, for all $x \in X$.
- (ii) Let X be reflexive. Show that T(H) is dense in X'.

Hint: You may use without prove the following: Let X be a normed space, $Y \subset X$ be a closed subspace and $x_0 \in X \setminus Y$. Then there exists $x' \in X'$ such that

$$x' = 0$$
 on Y , $||x'||_{X'} = 1$, $x'(x_0) = \text{dist}(x_0, Y)$.

(iii) Let X be reflexive. Show that for every $f \in L^2((0,T);X')$ there exists a sequence $(f_n)_{n\in\mathbb{N}} \subset L^2((0,T);H)$ such that $T(f_n) \to f$ in $L^2((0,T);X')$.

Hint: Approximate f by simple functions.

Total: 20 points