Problem 1 (Legendre transform, 2+2+2 points).

For a function $F : \mathbb{R}^d \to \mathbb{R}$, denote by F^* its Legendre transform.

- (i) Let $F(v) := \frac{1}{r} |v|^r$, for $1 < r < \infty$. Show that $F^*(p) = \frac{1}{r'} |p|^{r'}$, where $\frac{1}{r} + \frac{1}{r'} = 1$.
- (ii) Let $F(v) := \frac{1}{2}v \cdot Av + b \cdot v$, where $A \in \mathbb{R}^{d \times d}$ is a symmetric, positive definite matrix, and $b \in \mathbb{R}^d$. Compute F^* .
- (iii) Let $F(v) = \sqrt{1+v^2}, v \in \mathbb{R}$. Compute F^* .

Problem 2 (A nonlinear example, 3 points).

Use the method of characteristics to solve the nonlinear initial value problem

$$\begin{cases} \partial_t u + (\partial_x u)^4 = 0 \quad (x,t) \in \mathbb{R} \times (0,\infty), \\ u(x,0) = \frac{3}{4} x^{\frac{4}{3}}. \end{cases}$$

Problem 3 (Subdifferential, 3 points).

Let $F : \mathbb{R}^d \to \mathbb{R}$ be a convex function with $F(v)/|v| \to \infty$ as $|v| \to \infty$. We say that $p \in \mathbb{R}^d$ belongs to the subdifferential of F at v, written $p \in \partial F(v)$, if

$$F(r) \ge F(v) + p \cdot (r - v)$$
 for all $r \in \mathbb{R}^d$.

Prove that

$$p \in \partial F(v) \quad \Longleftrightarrow \quad v \in \partial F^*(p) \quad \Longleftrightarrow \quad v \cdot p = F(v) + F^*(p),$$

where F^* is the Legendre transform of F.

Problem 4 (Conservation, 4 points).

Let $F \in C^{\infty}(\mathbb{R})$, F(0) = 0, and $g \in C_{c}^{0}(\mathbb{R})$. Assume that u is a continuous integral solution to the conservation law

$$\begin{cases} \partial_t u + \partial_x F(u) = 0 & \text{in } \mathbb{R} \times (0, \infty), \\ u = g & \text{on } \mathbb{R} \times \{t = 0\}, \end{cases}$$

and u has compact support in $\mathbb{R} \times [0, \infty]$. Prove that

$$\int_{-\infty}^{+\infty} u(x,t) \, \mathrm{d}x = \int_{-\infty}^{+\infty} g(x) \, \mathrm{d}x \qquad \text{for all } t > 0.$$

Problem 5 (2+2 points).

 $\operatorname{Consider}$

$$\begin{cases} \partial_t u + \partial_x (e^u) = 0 & \text{in } \mathbb{R} \times (0, \infty), \\ u = g & \text{on } \mathbb{R} \times \{t = 0\}, \end{cases}$$

with

$$g(x) = \begin{cases} 2 & \text{for } x < 0, \\ 1 & \text{for } x \ge 0. \end{cases}$$

- (i) Construct an entropy solution using characteristics.
- (ii) Sketch the characteristics in the (t, x)-plane.

Total: 20 points