Problem 1 (Examples of Banach space-valued functions, 2+1 points).

Define $u_1: (0,1) \to L^2(0,1)$ by $u_1(t) = \chi_{(0,t)}$ and $u_2: (0,1) \to L^{\infty}(0,1)$ by $u_2(t) = \chi_{(0,t)}$.

- (i) Prove if the functions u_1 and u_2 are strongly measurable.
- (ii) Prove whether or not they are Bochner integrable and compute the integral if possible.

Let in the following be X a real Banach space and I = (0, T) with T > 0 a bounded interval.

Problem 2 (Bochner's Theorem, 4+1 points).

Let $u: I \to X$ be a strongly measurable function.

(i) Prove Theorem 1.20, i.e., u is integrable if and only if $||u(t)||_X$ is integrable.

Hint: For the "if" part construct a suitable sequence of simple functions approximating u and apply dominated convergence.

(ii) Assume u is integrable. Prove that

$$\left\|\int_{I} u(t) dt\right\|_{X} \leq \int_{I} \|u(t)\|_{X} dt$$

Problem 3 (Properties of Bochner integrals, 2+2 points).

Let X, Y be real Banach spaces and $u: I \to X$ strongly measurable.

(i) Let $A: X \to Y$ be a bounded linear map and u integrable. Show that $Au: I \to Y$ is strongly measurable, integrable and

$$A\left[\int_{I} u(t)dt\right] = \int_{I} A[u(t)]dt.$$

- (ii) Let $u \in L^1(I; X)$ and dim $Y \ge 1$. Prove that the following two statements are equivalent:
 - (a) u is weakly differentiable with weak derivative $u' \in L^1(I; X)$.
 - (b) There exists $v \in L^1(I; X)$ such that for all $A : X \to Y$ bounded linear operators $Au \in L^1(I; Y)$ is weakly differentiable with (Au)' = Av.

Prove that if (b) holds then u' = v a.e. in *I*.

Problem 4 (Dominated convergence, 3 points).

Let $\{u_n\}_{n\in\mathbb{N}}$ be a sequence of functions, $u_n: I \to X$, such that

- u_n is strongly measurable and integrable for all $n \in \mathbb{N}$,
- $u_n(t)$ converge to u(t) in X for a.e. $t \in I$,
- it exists a $\phi: I \to \mathbb{R}_+$ summable such that $||u_n(t)||_X \leq \phi(t)$ for all $n \in \mathbb{N}$ and a.e. $t \in I$.

Show that u is strongly measurable, integrable and

$$\lim_{n \to \infty} \int_{I} \|u_n(t) - u(t)\|_X dt = 0,$$
$$\lim_{n \to \infty} \int_{I} u_n(t) dt = \int_{I} u(t) dt.$$

Problem 5 (Lemmas 1.27 and 1.28, 3+2 points). Let $u \in L^1_{loc}(I; X)$.

(i) Let $\int_I \xi(t)u(t)dt = 0$ for all $\xi \in C_c^{\infty}(I)$. Prove that u = 0 a.e. in I.

Hint: Use a sequence ξ_n of test functions s.t. ξ_n converges pointwise to $\chi_{[t,t+h]}$ and apply dominated convergence and Theorem 1.26.

(ii) Let $u \in L^1(I; X)$ be weakly differentiable and u' = 0. Show that u(t) is constant a.e. in I.

Hint: Prove first that $\int_I w(t)u(t) = 0$ for $w \in C^{\infty}(\overline{I})$ with $\int_I w(t)dt = 0$ and use (i).

Total: 20 points