Prof. Dr. M. Disertori Raphael Winter Institut für Angewandte Mathematik Universität Bonn

PDE and Modelling

Sheet 10, due July 8

Problem 1 (3+5+2 points)

Consider the Lagrangian $f: \Omega \times \mathbb{R}^d \times \mathbb{R}^{d \times d}$ given by

$$f(x, z, P) = \det P.$$

- (a) Derive the Euler-Lagrange equation corresponding to f.
- (b) Show that f is a null Lagrangian, that is, every $u \in C^2(\Omega)$ solves the Euler-Lagrange equation corresponding to f.
- (c) Show that, for $u \in C^2$, the volume of $u(\Omega)$ only depends on the boundary values of u at $\partial \Omega$.

Problem 2 (10 points)

Suppose that $\Omega \subset \mathbb{R}^d$ is open and bounded T > 0, and let $\varepsilon > 0$. Find $f : \Omega \times (0, T) \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ such that the Euler-Lagrange equation for the functional

$$I[u] = \int_0^T \int_\Omega f(x, t, u, u_t, Du) \,\mathrm{d}x \,\mathrm{d}t$$

is

$$u_t - \Delta u - \varepsilon u_{tt} = 0$$
 in $\Omega \times (0, T)$.

Hint: Try a term containing $e^{-t/\varepsilon}$.

Problem 3 (*2*+*2*+*2*+*2*+*2 points***)**

According to Fermat's principle, a ray of light traveling between two points will follow the path that can be traversed in the shortest time.

Let $\gamma : [-1,1]^2 \to (0,\infty)$ be a function denoting the speed of light at a point $(x,y) \in [-1,1]^2$, and consider a piecewise C^1 curve $x \mapsto (x, u(x))$.

(a) Show that the time needed to traverse the path is given by

$$I[u] = \int_{-1}^{1} \frac{\sqrt{1 + u'(x)^2}}{\gamma(x, u(x))} \, \mathrm{d}x$$

- (b) Suppose that γ is smooth. Compute the Euler-Lagrange equation corresponding to I.
- (c) Suppose that $\gamma(x, y) = \gamma_0$ for x < 0 and $\gamma(x, y) = \gamma_1$ for $x \ge 0$. Show that a continuous minimizer u of I satisfies u''(x) = 0 for $x \ne 0$.
- (d) Under the same assumptions, derive an equation for the left and ride side derivatives of u at x = 0 in terms of γ_0 and γ_1 .
- (e) Derive Snell's law:

$$\frac{\sin \alpha_1}{\sin \alpha_0} = \frac{\gamma_1}{\gamma_0}$$

where α_0 denotes the angle of incidence and α_1 the angle of refraction of u, that is, α_0 and α_1 are the angles that u makes with the line y = u(0) on the left and right, respectively.