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Chapter 2

High temperature region

2.1 The O(N) model

Let us go back to the O(N) model introduced in Chapter 1. The finite volume
configuration set is denoted by

ΩΛ = (SN )Λ = {SΛ : Λ→ SN}, SΛ(x) = Sx ∈ SN = {S ∈ RN | ‖S‖ = 1},

where Λ = [−L, . . . , L]d, the energy functional is

HΛ(SΛ) = − 1
2

∑
x,y∈Λ

Jxy(Sx, Sy)− 1

β

∑
x∈Λ

(hx, Sx),

the interaction satisfies Jxy = Jyx ≥ 0 and hx ∈ RN plays the role of a local
magnetic field. Since (Sx, Sx) = 1 we can always fix Jxx = 0 up to a global
multiplication factor. Without loss of generality we then set Jxx = 0 in the rest
of this chapter.

In the following we denote by hΛ = {hx}x∈Λ h = {hx}x∈Zd the magnetic
field configurations in finite and infinite volume. Finally h1Λ, with h ∈ RN , will
denote the constant magnetic field: hx = h ∀x ∈ Λ. With these conventions the
partition function is

ZΛ,β(hΛ) =

∫
dSΛ e

β
2

∑
x,y∈Λ Jxy(Sx,Sy)e

∑
x∈Λ(hx,Sx). (2.1.1)

Boundary conditions: all the results/techniques we will see in this chapter
work for any choice of the boundary conditions. In many cases we will con-
sider periodic boundary conditions, i.e. the cube Λ is replaced by the torus
Λp = Zd/[−L, . . . , L]d. This choice has the advantage of respecting translation
invariance.
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4 CHAPTER 2. HIGH TEMPERATURE REGION

Translation invariance: To simplify the formulas we will often consider
translation invariant interactions i.e.

Jx+z,y+z = Jx,y ∀x, y, z ∈ Zd.

When periodic boundary conditions and a constant magnetic field are chosen
the measure inside (2.1.1) is also translation invariant.

2.1.1 Observables

We are interested in the thermodynamic limit of the following functions.

Magnetization and susceptibility:

Mα
Λ,β(h) = 1

|Λ|

∑
x∈Λ

Eβ,h1Λ

Λ,N [Sx,α] = − ∂

∂hα
ΦΛ(h1Λ) α, α′ ∈ [1, . . . , N ]

χα,α
′

Λ,β (h) = 1
|Λ|

∑
xy∈Λ

Eβ,h1Λ

Λ,N [Sx,αSy,α′ ]C = − ∂2

∂hα∂hα′
ΦΛ(h1Λ)

where the finite volume free anergy ΦΛ(hΛ) is defined by

ΦΛ,β(hΛ) = − 1

|Λ|
lnZΛ,β(hΛ)

Connected correlation functions:

Eβ,h1Λ

Λ,N

 m∏
j=1

Sxj ,αj


C

=

 m∏
j=1

∂

∂hxj,αj

 lnZΛ,β(hΛ)|hΛ=h1Λ

=

 m∏
j=1

∂

∂hxj,αj

[ lnZΛ,β(hΛ)− lnZΛ,β(h1Λ)
]
|hΛ=h1Λ

where αj ∈ [1, . . . , N ].
The behavior of these limits depends on the regularity properties of the

logarithm of the partition function as Λ → Zd. We remark that the functions
above are obtained by

1. either fixing a constant magnetic field on Λ hx = h ∀x ∈ ΛZd and taking
derivatives with respect to hα of the free energy ΦΛ,β(h1Λ) (magnetization
and susceptibility); note that h1Λ can be directly extended to an infinite
volume magnetic field configuration h1Zd ;

2. or taking local variations of a constant magnetic field i.e. there exists some
finite set Xh and a vector h ∈ RN such that hx = h ∀x ∈ Λ\X (since Xh
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is finite this is always true if Λ is large enough), and taking derivatives in
hx,αx , x ∈ Xh of the function

ln
ZΛ,β(hΛ)

ZΛ,β(h1Λ)

(connected correlation functions); in this last case there is no 1/|Λ| factor,
the partition function is replaced by a ratio and Xh = {x1, . . . , xm}.

To encode these cases we extend the finite volume partition function ZΛ,β(hΛ)
to a function on infinite volume magnetic field configurations belonging to the
set

H = {h ∈ (RN )Z
d

| ∃Xh ⊂ Zd, |Xh| <∞ and ∃h ∈ RN , with hx = h ∀x ∈ Zd\Xh},
(2.1.2)

by

ZΛ,β : H → R
h→ ZΛ,β(h|Λ)

where h|Λ ∈ (RN )Λ is defined by h|Λ = {h(x)}x∈Λ.

2.1.2 Main result

We will prove the following result.

Theorem 1 For any N ≥ 1 there exist constants 0 < β0 < 1, 0 < ε < 1 such
that ∀β ≤ β0

Φβ(h1Zd) = lim
Λ→Zd

ΦΛ,β(h1Λ)

exists and is analytic for h ∈ BCN (0, ε), where BCN (0, ε) = {v ∈ CN | ‖v‖ < ε}.
Moreover [

N∏
α=1

(∂hα)nα

]
Φβ(h1Zd) = lim

Λ→Zd

[
N∏
α=1

(∂hα)nα

]
ΦΛ,β(h1Λ)

for any choice of ni ∈ N. The same statements hold for

Fβ(h) = lim
Λ→Zd

ln
ZΛ,β(h|Λ)

ZΛ,β(h1Λ)
.

for any h ∈ H with h(x) = h ∀x 6∈ Y , where Y is any fixed finite set.

Consequence. This result implies in particular that the free energy and all
its derivatives are continuous functions of h near h = 0, therefore there can be
no phase transition in this temperature range.
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Proof of Theorem 1 Let h ∈ H with h(x) = h ∀x 6∈ Xh. By high tempera-
ture expansions (see Section 2.4) lnZΛ,β(h|Λ) can be written as a sum of local
functions

lnZΛ,β(h|Λ) =
∑
X⊂Λ

KX,β(h|X)

where KX,β is an infinite sum of functions Fn, where each Fn is (complex)
analytic with respect to {hx ∈ CN}x∈X as long as ‖hx‖ ≤ ε ∀x ∈ X:

KX,β(h|X) =
∑
n≥1

1

n!

∑
X1,...,Xn⊂X
∪ni=1Xi=X

Fn,β(X1, . . . , Xn; h|X).

In Section 2.5 we will see that, for β ≤ β0, this sum is absolutely convergent
uniformly in h ∈ H∩B

(CN )Zd
(0, ε). Then by Vitali’s theorem1 the limit function

KX,β is analytic in {hx}x∈X . Now if Jxy is translation invariant K satisfies
KX,β(h1X) = KTz(X),β(h1Tz(X)) ∀z ∈ Zd, where

T : Zd → Zd
x→ Tz(x) = x+ z

Tz(X) = {Tz(x)}x∈X .

This will become clear from the expression we will obtain for K. Then

lim
Λ→Zd

ΦΛ,β(h1Λ) = lim
Λ→Zd

1
|Λ|

∑
X⊂Λ

KX,β(h1X) = lim
Λ→Zd

1
|Λ|

∑
X⊂Λ

∑
x0∈X

KX,β(h1X)
|X|

= lim
Λ→Zd

1
|Λ|

∑
x0∈Λ

∑
X⊂Λ
x0∈X

KX,β(h1X)
|X| =

∑
X⊂Zd,|X|<∞

0∈X

KX,β(h1X)
|X|

(2.1.3)

where in the last line we used translation invariance:2.

KX,β(h1X) = KT−x0
(X),β(h1T−x0

(X)).

Moreover

lim
Λ→Zd

[lnZΛ,β(h|Λ)− lnZΛ,β(h1|Λ)] = lim
Λ→Zd

∑
X⊂Λ

X∩Xh 6=∅

[KX,β(h|X)−KX,β(h1X)]

=
∑

X⊂Zd,|X|<∞
X∩Xh 6=∅

[KX,β(h|X)−KX,β(h1X)] (2.1.4)

1 Convergence Vitali Theorem: Let D be an open connected set of C, fn a sequence of
analytic functions in D, locally uniformly bounded such that the sequence converges on a set
with some accumulation point in D. Then fn converges locally uniformly in D. The limit is
then an analytic function.

2In the non translation invariant case this equality becomes an inequality:

| lim
Λ→Zd

ΦΛ,β(h1Λ)| ≤ sup
x0∈Zd

∣∣∣∣∣∣∣∣∣
∑

X⊂Zd,|X|<∞
x0∈X

KX,β(h1X )

|X|

∣∣∣∣∣∣∣∣∣
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since KX,β(h|X) = KX,β(h1X) ∀X∩Xh = ∅, where Xh is a finite set depending
on h. This result holds also for non translation invariant interactions. We will
see in the next section that (2.1.3) converges uniformly in h ∈ BCN (0, ε) and
(2.1.4) converges uniformly in

{h ∈ H|h ∈ B
(CN )Zd

(0, ε) and Xh = Y }

for any fixed finite set Y . Then both limits are analytic functions. Finally, by

Cauchy formula ( 2πi
n! f

n(x) =
∮
γ

f(z)
(z−x)n+1 ) and analyticity of the limit functions,

the thermodynamic limit (limΛ→Zd) commutes with all derivatives in h. 2

2.2 The limit case: infinite temperature.

When β = 0 (i.e. T =∞) the partition function factors

ZΛ,0(hΛ) =
∏
x∈Λ

∫
dSxe

(hx,Sx) =
∏
x∈Λ

Zx,0(hx) =
∏
x∈Λ

Z0,0(hx),

where Zx,0(hx) = Z0,0(hx) (x = 0 is the origin in Zd) is analytic on CN and
bounded away from zero for hx ∈ BCN (0, ε). Therefore lnZx,0(hx) is analytic in
BCN (0, ε). In the same way for each Y ⊂ Zd with |Y | <∞ the function

lnZΛ,0(h|Λ) =
∑
x∈Y

lnZx,0(hx) + (|Λ| − |Y |) lnZ0,0(h)

is analytic in {h ∈ H|Xh = Y and h ∈ B
(CN )Zd

(0, ε)} and

lim
Λ→Zd

ΦΛ,0(h1Λ) = lnZ0,0(hx) = ln

∫
dS0e

(h,S0)

lim
Λ→Zd

[lnZΛ,0(h|Λ)− lnZΛ,0(h1|Λ)] =
∑
x∈Y

ln
Zx,0(hx)
Zx,0(h) .

are analytic functions too. When 0 < β < 1 we expand around the case β = 0.
Therefore in the following we concentrate on

ZΛ,β(h|Λ)

ZΛ,0(h|Λ)
=

ZΛ,β(h|Λ)∏
x∈Λ Zx,β(hx)

(2.2.5)

where we used Zx,β(hx) = Zx,0(hx).

2.3 Preliminary combinatorial definitions and re-
sults.

For simplicity we state all definitions and results using Λ and X finite subsets
of Zd, but everything can be generalized to any (finite or infinite) abstract set
of points (not necessarily in Zd).
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Edges and paths. The set EΛ of all possible undirected edges connecting pairs
of points in Λ is denoted by

EΛ = {(x, y)|x 6= y ∈ Λ}, with (x, y) = (y, x).

A simple path γab of lenght n starting at a and ending at b is a subset of EΛ

γab = {e1, . . . , en} ⊂ EΛ

such that there exist x1, . . . xn−1 points in Λ satisfying

e1 = (a, x1), e2 = (x1, x2), . . . , en = (xn−1, b).

With this definition each edge of EΛ can appear only once in the path (we never
travel on the same edge twice). When a = b we say that γaa is a closed path
(also called cycle or loop).

Graphs. A graph G is a pair (X,E), where X ⊂ Λ and E ⊂ EX . A graph
G = (X,E) is connected if for any pair a, b ∈ X there is a simple path γab made
of edges in E connecting a to b. A graph G = (X,E) with no cycle is called a
forest on X. A connected graph G = (X,E) with no cycle is called a tree on
X. We will denote by

G[X] = {G = (X,E)| E ⊂ EX} F [X] = {G ∈ G[X]| G has no cycle}
Gc[X] = {G ∈ G[X]| G connected} T [X] = {G ∈ Gc[X]| G has no cycle}

the set of graphs, connected graphs, forests and trees on a fixed set X.

Connected components. Each graph G = (X,E) can be associated to a
unique partition P ∈ P[X] of X into subsets such that

(Y,E ∩ EY ) ∈ Gc[Y ], ∀Y ∈ P, and

a ∈ Y, b ∈ Y ′, with Y, Y ′ ∈ P, Y 6= Y ′ ⇒ (a, b) 6∈ E.

The elements Y in the partition are called connected components of G.

Characterization of a graph. A graph G = (X,E) can be uniquely deter-
mined by giving the following information:

1. a partition P ∈ P[X] (fixes the connected components) and

2. for each Y ∈ P a connected graph g ∈ Gc[Y ] (this fixes the edges inside
each connected component).

In the same way a forest F ∈ F [X] is uniquely determined by giving the follow-
ing information:

1. a partition P ∈ P[X] (fixes the connected components) and

2. for each Y ∈ P a tree T ∈ T [Y ] (this fixes the edges inside each connected
component).
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Functions and connected functions. Let PaΛ = {X ⊂ Λ} the set of all
subsets (parts) of Λ. Let ψ be some function on PaΛ

ψ : PaΛ → R
X → ψ(X)

.

Lemma 1 There exists a unique function ψc : PaΛ → R satisfying the equation

ψ(X) =
∑

P∈P[X]

∏
Y ∈P

ψc(Y ) ∀X ∈ PaΛ. (2.3.6)

Proof. The proof is done by induction on the size of X. Let |X| = 1, then
P[X] = X and ψc(X) = ψ(X) is the unique solution. Now let us suppose there
is a unique solution for the equation for any set Y with |Y | = n. Let |X| = n+1.
Then (2.3.6) can be writte an

ψ(X) = ψc(X) +
∑

P∈P[X]\X

∏
Y ∈P

ψc(Y )

The second term contains only sets Y with |Y | ≤ n then by the induction
hypothesis all factors ψc(Y ) have been uniquely determined already. It remains
only ψc(X), hence

ψc(X) = ψ(X)−
∑

P∈P[X]\X

∏
Y ∈P

ψc(Y )

is the unique possible choice. This ends the proof. 2

2.4 Setting up the expansion

Lemma 2 The finite volume partition function can be written as

ZΛ,β(h|Λ) =
∑

P∈P[Λ]

∏
X∈P

A(X), with (2.4.7)

A(X) =

∫ ∏
x∈X

dνx(Sx)wc(X), (2.4.8)

where P[Λ] is the set of all possible partitions of Λ into (not necessarily con-
nected) subsets,

dνx(Sx) = dSxe
(hx,Sx),

the interaction term wc(X) is the unique solution of (2.3.6) with ψ(X) replaced
by

w(X) =
∏

x<y∈X
eβJxy(Sx,Sy)

and we have introduced some fixed ordering < on the set X.
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Proof. With the definitions above the partition function is written as

ZΛ,β(h|Λ) =

∫ ∏
x∈Λ

dνx(Sx)w(Λ).

By (2.3.6) there exists a unique function wc solution of

w(X) =
∑

P∈P[X]

∏
Y ∈P

wc(Y ).

Each function wc(Y ) depends only on spins Sx with x ∈ Y . Therefore the
integral factors

ZΛ,β(h|Λ) =
∑

P∈P[X]

∫ ∏
x∈X

dνx(Sx)
∏
Y ∈P

wc(Y )

=
∑

P∈P[X]

∏
Y ∈P

[∫ ∏
x∈Y

dνx(Sx)wc(Y )

]
.

This ends the proof. 2

Lemma 3 The ratio of partition functions (2.2.5) can be written as

ZΛ,β(h|Λ)

ZΛ,0(h|Λ)
= 1 +

∑
n≥1

1

n!

∑
X1,...,Xn⊂Λ

|Xi|≥2, ∀i

[
n∏
i=1

A(Xi)

]
V (X1, . . . , Xn) (2.4.9)

where the amplitude is defined as

A(X) =
A(X)∏

x∈X A({x})
, A({x}) =

∫
dν(Sx) =

∫
dSxe

(hx,Sx),

and V implements the non-overlapping condition for the sets Xi

V (X1, . . . , Xn) =
∏
i<j

V (Xi, Xj), V (X,X ′) =

{
1 X ∩X ′ = ∅
0 X ∩X ′ 6= ∅ (2.4.10)

Proof. We remark that∏
x∈Λ

Zx,0(hx) =
∏
X∈P

∏
x∈X

Zx,0(hx), and Zx,0(hx) = A({x}).
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Then using Lemma 2 and (2.2.5) we have

ZΛ,β(h|Λ)

ZΛ,0(h|Λ)
=

∑
P∈P[Λ]

∏
X∈P

A(X)∏
x∈X A({x})

=
∑

P∈P[Λ]

∏
X∈P

A(X)

=
∑

P∈P[Λ]

∏
X∈P
|X|≥2

A(X) = 1 +
∑
n≥1

1

n!

∑
X1,...,Xn⊂Λ

|Xi|≥2,Xi∩Xj=∅∀i>j

[
n∏
i=1

A(Xi)

]

= 1 +
∑
n≥1

1

n!

∑
X1,...,Xn⊂Λ

|Xi|≥2, ∀i

[
n∏
i=1

A(Xi)

]
V (X1, . . . , Xn)

where we used A(X) = 1 whenever |X| = 1. This ends the proof. 2

Functions and connected functions. For each given sequence of subsets
X = {Xi}i∈N, Xi ⊂ Λ, the interaction V defined in (2.4.10) can be seen as a
function on PaN = {I ⊂ N}:

V : PaN → R
I → V (I) = V ({Xi}i∈I)

.

Then by Lemma 2 there is a unique function Vc : PaN → R such that

V (I) =
∑
I∈P[I]

∏
I′∈I

Vc(I
′). (2.4.11)

With this definition we can state the main result.

Lemma 4 The logarithm of the ratio (2.2.5) can be formally written as

ln
ZΛ,β(h|Λ)

ZΛ,0(h|Λ)
=
∑
n≥1

1

n!

∑
X1,...,Xn⊂Λ

|Xi|≥2, ∀i

[
n∏
i=1

A(Xi)

]
Vc(X1, . . . , Xn) (2.4.12)

where, Vc is defined in (2.4.11) above.

Proof. By (2.4.9) and (2.4.11) above we have

ZΛ,β(h|Λ)

ZΛ,0(h|Λ)
= 1 +

∑
n≥1

1

n!

∑
X1,...,Xn⊂Λ

|Xi|≥2, ∀i

[
n∏
i=1

A(Xi)

] ∑
I∈P[{1,...n}]]

∏
I∈I

Vc(I)

= 1 +
∑
n≥1

∑
I∈P[{1,...n}]

1

n!

∑
X1,...,Xn⊂Λ

|Xi|≥2, ∀i

[
n∏
i=1

A(Xi)

]∏
I∈I

Vc(I)

= 1 +
∑
n≥1

∑
I∈P[{1,...n}]

1

n!

∏
I∈I

A(I)
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where

A(I) =
∑

Xi⊂Λ,i∈I
|Xi|≥2

Vc(I)
∏
i∈I
A(Xi) =

∑
Xi⊂Λ,i∈I
|Xi|≥2

Vc({Xi}i∈I)
∏
i∈I
A(Xi)

=
∑

X1,...,X|I|⊂Λ

|Xi|≥2

Vc(X1, . . . , X|I|)

|I|∏
i=1

A(Xi) = A(|I|)

and in the last line we relabelled the sets {Xi}i∈I . The expression then depends
only on the number of elements inside I.

Each partition I ∈ P[{1, . . . n}] can be uniquely identified by the three
following ingredients:

1. the number k = |I| of components in the partition 1 ≤ k ≤ n;

2. the cardinals of each component i.e. k numbers n1, . . . nk satisfying ni ≥ 1
and

∑k
j=1 nj = n;

3. k subsets I1, . . . , Ik of {1, . . . n} satisfying Ij = nj ∀j = 1, . . . , k and
Ij ∩ Ij′ = ∅ ∀j 6= j′.

Then A(I) depends only on |I| = nI . The formula above becomes

ZΛ,β(h|Λ)

ZΛ,0(h|Λ)
= 1 +

∑
n≥1

n∑
k=1

∑
n1,...nk≥1∑k
j=1 nj=n

∑
I1,...Ik⊂Λ,|Ij |=nj
Ij∩Ij′=∅∀j 6=j′

1

n!

k∏
j=1

A(nj)

= 1 +
∑
n≥1

n∑
k=1

1

k!

∑
n1,...nk≥1∑k
j=1 nj=n

k∏
j=1

1

nj !
A(nj) = 1 +

∑
k≥1

1

k!
Ak = eA

where we defined

A =
∑
n≥1

1

n!
A(n)

and we used the following relations

card
{
I1, . . . Ik ⊂ Λ| |Ij | = nj∀j, Ij ∩ Ij′ = ∅ ∀j 6= j′

}
=

n!

k!
∏k
j=1 nj !∑

n≥1

n∑
k=1

(·) =
∑
k≥1

∑
n≥k

(·),
∑
n≥k

∑
n1,...nk≥1∑k
j=1 nj=n

(·) =
∑

n1,...nk≥1

(·)

Therefore A is the formal logarithm of the ratio of two partition functions.
Inserting the definition of A(n) we obtain

A =
∑
n≥1

1

n!

∑
X1,...,Xn⊂Λ

|Xi|≥2

Vc(X1, . . . , Xn)

n∏
i=1

A(Xi).
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This ends the proof. 2

Remark 1. While the sums (2.4.7) and (2.4.9) are finite, the expression in
(2.4.12) is an infinite sum, hence the formula is exact (and not just formal) if
we can prove that the sum is absolutely convergent. This will be done in the
next subsection.

Remark 2. The connected functions wc and Vc appearing in (2.4.7) and
(2.4.12) can be expressed as sums over connected graphs. This is showed in
the next lemma.

Lemma 5 The connected functions wc and Vc in the lemmas above can be ex-
pressed as

wc(X) =
∑

G∈Gc[X]

∏
e∈E

[we − 1],

Vc(X1, . . . , Xn) =
∑

G∈Gc[{1,...,n}]

∏
e∈E

[Ve − 1]

where

we = w(xe, ye) = eβJxeye (Sxe ,Sye )

Ve = V (ie, je) = V (Xie , Xje) =

{
1 Xie ∩Xje = ∅
0 Xie ∩Xje 6= ∅

Proof The interaction term in the partition function can be written as

w(Λ) = e
β
2

∑
x,y∈Λ Jxy(Sx,Sy) =

∏
e∈EΛ

we =
∏
e∈EΛ

[1+(we−1)] =
∑

G=(X,E)∈G[Λ]

∏
e∈E

[we−1]

where we used Jxx = 0. Now each graph can be uniquely determined fixing a
partition P ∈ P[Λ] and a connected graph g ∈ Gc[X] for each component X ∈ P
(see subsect.2.3). Then

w(Λ) =
∑

P∈P[Λ]

∏
X∈P

 ∑
g=(X,E)∈Gc[X]

∏
e∈E

(we − 1)

 .
This is then a solution of w(Λ) =

∑
P∈P[Λ]

∏
X∈P wc(X). The solution being

unique we have the result. The same arguments apply for V . 2

2.5 Convergence of the log expansion

To prove the convergence of (2.4.12) we will need three separate steps. The first
(Thm. 2 below) depends on the details of the model we are considering, while
the last two are model independent.
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Theorem 2 There exists a β0 > 0 such that ∀β < β0

sup
a∈Zd

∑
X⊂Zd,2≤|X|<∞,a∈X

|A(X)|e|X| < 1. (2.5.13)

The result is true for any d ≥ 1, for all N ≥ 1 and for any interaction Jxy such
that supx∈Zd

∑
y∈Zd Jxy <∞.

Theorem 3 If (2.5.13) holds then for any fixed point a ∈ Λ the sum

∑
n≥1

1
(n−1)!

∑
X1⊂Λ

|X1|≥2,a∈X1

|A(X1)|
|X1|

∑
X2,...,Xn⊂Λ

|Xi|≥2∀i

[
n∏
i=2

|A(Xi)|

]
|Vc(X1, . . . , Xn)|

(2.5.14)
is convergent uniformly in the volume Λ and in the point a.

Theorem 4 If (2.5.14) holds then the series

1

|Λ|
ln
ZΛ,β(h|Λ)

ZΛ,0(h|Λ)
=

1

|Λ|
∑
n≥1

1

n!

∑
X1,...,Xn⊂Λ

|Xi|≥2, ∀i

[
n∏
i=1

A(Xi)

]
Vc(X1, . . . , Xn)

converges in absolute value uniformly in Λ.

Remark. The same arguments hold to prove convergence of the analog ex-

pression for ln
ZΛ,β(h|Λ)

ZΛ,β(h1|Λ) .

2.6 Cluster expansion: special case

In this section we will prove Theorem 2 in the special case when

sup
x

∑
xy

J1/2
xy <∞.

Let hx ∈ BCN (0, ε). Then

|A(X)| ≤
∫ ∏

x∈X

dSxe
(<hx,Sx)

|A({x})|
|wc(X)|

Since hx is small we have

|A({x})| = |
∫
dSxe

(hx,Sx)| = 1 +O(ε2), e(<hx,Sx) = 1 +O(ε).

Moreover

|wc(X)| ≤
∑

g=(X,E)∈Gc[X]

∏
e∈E
|we − 1| ≤

∑
g=(X,E)∈Gc[X]

∏
e∈E

βJee
βJe
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where we used |ex − 1| ≤ |x|e|x|, |(Sx, Sy)| ≤ 1 and we abbreviated Je = Jx,y
for each edge e = (x, y). Then

|A(X)| ≤ K |X|ε

∑
g=(X,E)∈Gc[X]

∏
e∈E

βJee
βJe .

where Kε = 1 +O(ε). We will need the following two remarks.

Remark 1. Choosing a connected graph g = (X,E) is equivalent to

1. choose a set of points X and

2. choose a set E ⊂ EX such that (X,E) is connected.

Definition. We define a path in Λ of lenght n starting at a as a set of n + 1
points γ = {x0, . . . , xn} such that x0 = a. The path may use the same edge of
EΛ several times. Let Wn

a the set of paths starting at a of lenght n.

Remark 2. Each connected graph g = (X,E) with a ∈ X and |X| ≥ 2 can

be associated to a (non unique) path γg = (x0, .., x2|E|) ∈ W
2|E|
a starting at a

of lenght n = 2|E| such that

1. (xj , xj+1) ∈ E ∀j = 0, . . . , n− 1 (the path contains only edges in E) and

2. each edge e = (x, y) ∈ g appears exactly twice in the path (crossed in
opposite directions): ∃j 6= k such that (xj , xj+1) = (x, y) and (xk, xk+1) =
(y, x).

This can be seen by induction on the size of the set (see [3]). When X = {x, y}
contains only two points then the only connected graph is e = (x, y) and the
unique path is given by γ = {e1, e2} with e1 = (x, y) and e2 = (y, x). Now
suppose the statement is true for G = (X,E) a connected graph on X and let
γG be the corresponding path. Let us add one point y to the set X and let E′

the set of lines we add to E in order to obtain G′ a connected set on X ∪ {y}.
To construct a path γG′ we choose one edge in E′ and add it to γG twice, so
that we cross it in both directions. This completes the construction.

Now with these remarks we can write∑
X⊂Zd,a∈X
2≤|X|<∞

|A(X)|e|X| ≤
∑

g=(X,E)∈Gc[X]

|X|≥2,a∈X

[eKε]
|X|
∏
e∈E

βJee
βJe

=
∑
n≥1

∑
g=(X,E)∈Gc[X]

|E|=n,,a∈X

[eKε]
|X|
∏
e∈E

βJee
βJe

≤ [eKε]
∑
n≥1

∑
γ∈W2n

a

[e1+βKεβ]n
2n−1∏
j=0

J1/2
xjxj+1

≤ [eKε]
∑
n≥1

[Cβ]n = [eKε]
Cβ

1− Cβ
< 1
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where we used |X| ≤ |E|+ 1, Je ≤ 1 and we defined

C = e1+βKε

[
sup
x

∑
y

J1/2
xy

]2

.

The last line holds if β is small enough. The sum over paths is done starting
from the end point

∑
γ∈W2n

a

2n−1∏
j=0

J1/2
xjxj+1

=
∑
x1

· · ·
∑
x2n

2n−1∏
j=0

J1/2
xjxj+1

≤

[
sup
x

∑
y

J1/2
xy

]2n

.

This ends the proof. 2

2.7 Polymer expansion

In this section we will prove Theorem 3. If we try to apply the same strategy
as in the previous section, by Lemma 2 we can bound

Vc(X1, . . . , Xn) ≤
∑

G∈Gc[{1,...,n}]

∏
e∈E
|[Ve − 1]|, where |[Ve − 1]| = 0, 1.

In the special case when X1 = X2 = · · · = Xn we have |[Ve − 1]| = 1 for any
e ∈ E{1,...n}. Then∑

G∈Gc[{1,...,n}]

∏
e∈E
|[Ve − 1]| = card Gc[{1, . . . , n}] = O(2n

2

).

On the other hand the contribution from
∑
X,a∈X |A(X)|n is at best ρn for some

ρ < 1. Then we have ∑
n≥1

ρn

n!
2n

2

= +∞.

The solution to this problem is to partially resum the connected graphs in Vc.
The resummation must garantee that:

1. we keep explicitely a set of lines ensuring the graph is connected (the
minimal structure ensuring this is true is a tree);

2. all possible choices of additional lines are resummed (any additional line
will create a cycle in the graph);

3. since the same graph can be obtained by different tree graphs by adding
the necessary number of loop line we must ensure we do not count the
same graph twice.

The advantage is that choosing a tree costs only a n! factor instead of 2n
2

. The
next subsection contains the tools needed to perform these operations rigorously.
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2.7.1 Resummation of the connected diagrams.

Most of the material presented in this section is based on [2] and [1].
The smallest connected diagram on some abstract set of points Λ is a tree

graph. Now let P ∈ P[Λ] be a partition of Λ. The smallest graph compatible
with P (i.e. whose connected components are the elements in P ) is a forest.
Therefore a forest is the minimal amount of lines (information) we need to
garantee that the elements in P are connected. The following formula allows to
extract forests from sums over general graphs in a consistent way.

Theorem 5 (Brydges-Kennedy-Abdesselam-Rivasseau Forest formula)

For any finite abstract set of points Λ let u = {ue}e∈EΛ ∈ [0, 1]EΛ . For any func-
tion f : [0, 1]EΛ → C with continuous first derivative in each ue we have

f(1) =
∑

F∈F [Λ]

∫
[0,1]|F |

∏
e∈F

dse

[∏
e∈F

∂ue

]
f(u)|u(sF )

where 1 ≡ ue = 1 ∀e ∈ EΛ and for any e = (x, y)

uxy(sF ) =

{
0 if x, y not connected by F
infe∈γxy(F ) se otherwise

(2.7.15)

and γxy(F ) is the unique simple path made of edges in F connecting x to y.

Proof We will prove the analog formula for ordered forests

f(1) =
∑
n≥0

∑
F∈Fo[Λ]

|F |=n

∫
∆n

|F |∏
j=1

dsj

 n∏
j=1

∂uej

 f(u)|u(sF ) (2.7.16)

where F [Λ] is replaced by Fo[Λ] the ordered forests F = {e1, . . . e|F |} and

∆n = {(s1, s2, . . . , sn) ∈ [0, 1]n| 1 ≥ s1 ≥ s2 ≥ · · · ≥ sn ≥ 0}.

The sum over unordered forests can be obtained by remarking that∑
orders

∫
∆n

=

∫
[0,1]|F |

.

The formula (2.7.16) is proved by iteration on the number of edges in the forest.
To encode the different steps it is convenient to introduce the function

χ : P[Λ] → [0, 1]EΛ

P → χP
where χP (e) = χP (x, y) =

{
1 if ∃X ∈ P, x, y ∈ X
0 otherwise

and (x, y) are the two points attached to e. In the special case when the partition
P contains only one set P = Λ we have χΛ(e) = 1 ∀e ∈ EΛ. Now let Fj
(j = 1, . . . , n = |F |) be the forest containing only the first j lines (e1, . . . , ej)
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of F , and let PFj ∈ P[Λ] be the corresponding partition of Λ into connected
components. Then Fn = F and we have

u(sFn) = sn(χPFn − χPFn−1
) + sn−1(χPFn−1

− χPFn−2
) + · · ·+ s1χPF1

.

To prove this identity let γxy(F ) = (lj1 , . . . , ljp), j1 < j2 < · · · < jp be the
path in F connecting x to y (for any pair (x, y) connected by F ). Then (x, y)
are connected by Fj ∀j ≥ jp but they are not connected by Fjp−1. Therefore
χPFj (x, y) = 0 when j < jp and χPFj (x, y) = 1 when j ≥ jp. Inserting this in

the expression above we obtain u(sFn)(x, y) = sjp = infe∈γxy(F ) se.
To set up the iteration we introduce for any forest Fn = {e1, . . . , en}, n ≥ 1

the function
ũn+1 : ∆n+1 → [0, 1]EΛ

(s1, . . . , sn+1) → ũ(s1, . . . , sn+1)

where
ũ(s1, . . . , sn+1) = sn+1(χΛ − χPFn ) + u(sFn). (2.7.17)

For the first iteration step we define

ũ1 : [0, 1] → [0, 1]EΛ

s1 → ũ(s1) = s1χΛ.

With these definitions ũ satisfies

ũn+1(s1, . . . , sn, sn) = ũn(s1, . . . , sn) ∀n ≥ 2. (2.7.18)

Now we can start the proof of (2.7.16). Since 1 = ũ1(s1 = 1)

f(1) = f(ũ1(s1))|s1=1 = f(ũ1(s1))|s1=0 +

∫ 1

0

ds1

∑
e1∈EΛ

∂ue1 f(u)|ũ1(s1)

Using (2.7.15) f(ũ1(s1))|s1=0 = f(0) = f(u(sF=∅)) is the contribution from the
unique forest with no line |F | = 0. Then the formula above can be written as

f(1) = f(u(sF=∅)) +
∑

F1∈Fo[Λ]

|F1|=1

∫ 1

0

ds1

∏
e∈F1

∂uef(u)|ũ1(s1)

To prove the induction step let us suppose

f(1) =

q−1∑
n=0

∑
F∈Fo[Λ]

|F |=n

∫
∆n

n∏
j=1

dsj
∏
e∈F

∂uef(u)|u(sF )



+

 ∑
Fq∈Fo[Λ]

|F |=q

∫
∆q

q∏
j=1

dsj
∏
e∈Fq

∂uef(u)|ũq(s1,...,sq)


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Using (2.7.18) (2.7.17)

ũq(s1, . . . , sq) = ũq+1(s1, . . . , sq, sq), ũq+1(s1, . . . , sq, 0) = u(sFq ),

hence ∏
e∈Fq

∂uef(u)|ũq(s1,...,sq) =
∏
e∈Fq

∂uef(u)|u(sFq )

+

∫ sq

0

dsq+1

∑
eq+1

∏
e∈Fq+1

∂uef(u)|ũq+1(s1,...,sq+1)

where Fq+1 is the forest with lines e1, . . . eq+1. If PFq+1
= Λ, i.e. the forest is a

spanning tree on Λ then χΛ = χPFq+1
,

ũq+1(s1, . . . , sq+1) = u(sFq+1)

and the induction stops. This ends the proof. 2
In order to apply this formula to Vc we will need the following additional

definition.

Definition: factorization. We say that a configuration u ∈ [0, 1]EΛ is factor-
ized on a partition P ∈ P[Λ] if ue = 0 for all e edges connecting two differents
sets in P :

uxy = 0 if ∃X 6= X ′ ∈ P , x ∈ X, y ∈ X ′.
We say that a function f : [0, 1]EΛ → C has the factorization property if for any
partition P ∈ P[Λ] and any configuration u factorized on P

f(u) =
∏
X∈P

fX(uX)

for some functions fX : [0, 1]EX → C. Here uX is the restriction of u to EX .
With this definition we have the following two lemmas.

Lemma 6 Let f : [0, 1]EΛ → C be a function with continuous first derivative in
each ue and with the factorization property. Then

f(1) =
∑

P∈P[Λ]

∏
X∈P

 ∑
T∈T [X]

∫
[0,1]|T |

∏
e∈T

dse

[∏
e∈T

∂ue

]
fX(uX)|u(sT )


Proof Direct application of the definition of a forest as a partition P ∈ P[Λ]
plus a tree graph inside each connected component X ∈ P . 2

Lemma 7 The connected function Vc(1, . . . , n) introduced in (2.4.11) can be
written as

Vc(X1, . . . , Xn) =
∑

T∈T [{1,...,n}]

∫
[0,1]|T |

∏
e∈T

dse

[∏
e∈T

[Ve − 1]

]∏
e 6∈T

[Ve(ue(sT ))],

(2.7.19)
where

Ve(ue) = [1 + ue(Ve − 1)] (2.7.20)
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Proof Using (2.7.20) we define

f(u) =
∏

e∈E{1,...,n}

Ve(ue).

This function satisfies f(1) =
∏
e Ve and f(0) = 1. Moreover f is differentiable

in all ue and has the factorization property. Hence we can apply Lemma 6
above. Since [∏

e∈T
∂ue

]
fX(uX)|u(sT ) =

∏
e∈T

[Ve − 1]
∏
e 6∈T

Ve(ue(sT ))

we obtain the result. 2

2.7.2 Proof of Theorem 3

This proof is mostly based on [1]. We insert the formula (2.7.19) above inside
(2.5.14)

|Vc(X1, . . . , Xn)| ≤
∑

T∈T [{1,...,n}]

∫
[0,1]|T |

∏
e∈T

dse
∏
e∈T
|Ve − 1|

∏
e 6∈T

|Ve(ue(sT ))|

≤
∑

T∈T [{1,...,n}]

∏
e∈T
|Ve − 1|

since
0 ≤ [Ve(ue(sT ))] = [1 + ue(Ve − 1)] ≤ 1.

Then (2.5.14) can be bounded by∑
X1⊂Λ,|X1|≥2,

a∈X1

|A(X1)|
|X1| +

∑
n≥2

∑
T∈T [{1,...,n}]

1
(n−1)!

∑
X1⊂Λ,|X1|≥2

a∈X1

|A(X1)|
|X1| · (2.7.21)

∑
X2,...,Xn⊂Λ

|Xi|≥2∀i

[
n∏
i=2

|A(Xi)|

]∏
e∈T
|Ve − 1|

In order to fix a tree T ∈ T [{1, . . . , n}] we need three ingredients:

1. d1, . . . , dn ≥ 1 the coordination number of each vertex i = 1, . . . n (i.e.
number of lines in T hooking to i); the choice of these numbers must be
compatible with a tree structure;

2. a tree with fixed coordination numbers d1. . . ,dn, T ∈ Td1,...,dn
[{1, . . . , n}].

The sum over trees above can be reorganized as∑
T

(·) =
∑
{dj}nj=1

∑
T,{dj}nj=1fixed

(·) ≤
∑
{dj}nj=1

(n−2)!∏n
j=1(dj−1)! sup

T,{dj}nj=1fixed

(·).
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where we used Cayley’s theorem

card[T, {dj}nj=1fixed] =
(n− 2)!∏n
j=1(dj − 1)!

.

Then the terms corresponding to n ≥ 2 in (2.7.21) are bounded by

∑
n≥2

∑
d1,...dn

sup
T,{dj}nj=1fixed

∑
X1,...,Xn⊂Λ

|Xi|≥2, a∈X1

1
|X1|

[
n∏
i=1

|A(Xi)|
(dj−1)!

]∏
e∈T
|Ve − 1|

For a fixed tree we call X1 the root and all points with dj = 1 (except eventually
the root) are called leaves. For each point j there is a unique path in T going
from j to the root. Note that the choice of the root is arbitrary. Therefore
we can perform the sum over Xj recursively starting from the leaves and going
towards the root. For any fixed point j let ej = (Xj , Xa(j)) the unique edge in
the tree going from j towards the root. We call a(j) the ancestor of j in the
tree.

When j is a leaf ej is the unique edge touching j. Therefore Xj appears
only in A(Xi) and in Vej . Keeping Xa(j) fixed∑
Xj

|A(Xj)||1− Vej | =
∑
Xj

|A(Xj)||1− V (Xj , Xa(j))| =
∑

Xj ,Xj∩Xa(j) 6=∅

|A(Xj)|

≤ |Xa(j)| sup
b∈Xa(j)

∑
Xj ,b∈Xj

|A(Xj)| ≤ |Xa(j)| sup
b∈Λ

∑
Xj ,b∈Xj

|A(Xj)||Xj |dj−1

where we used dj − 1 = 0 since j is a leaf. After completing the sum for each
leaf we pass to the next point j′ = a(j). Since each leaf attached to j′ brings a
factor |Xj′ | we will have to estimate∑

Xj′

|A(Xj′)||Xj′ |dj′−1|1− Vej′ | =
∑

Xj′ ,Xj′∩Xa(j′) 6=∅

|A(Xj′)||Xj′ |dj′−1

≤ |Xa(j′)| sup
b∈Λ

∑
Xj′ ,b∈Xj′

|A(Xj′)||Xj′ |dj−1.

We repeat this operation for every vertex except the root. Finally for the root
we have ∑

X1,a∈X1

|A(X1)||X1|d1−1 ≤ sup
b∈Λ

∑
X1,b∈X1

|A(X1)||X1|d1−1

Note that these bounds now depend on d1, . . . , dn, but not on the specific tree,
so the supT is trivial.

Then (2.7.21) is bounded by∑
n≥1

ρn =
ρ

1− ρ
<∞,
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where we used∑
dj≥1

sup
b∈Λ

∑
Xj⊂Λ,b∈Xj

|A(Xj)| |X|
dj−1

(dj−1)! = sup
b∈Λ

∑
Xj⊂Λ,b∈Xj

|A(Xj)|e|Xj | ≤ ρ < 1

uniformly in Λ by Theorem2 and

sup
b∈Λ

∑
X1⊂Λ,b∈X1

|A(X)|
|X1|

≤ ρ

for the contribution from n = 1. This ends the proof. 2

2.7.3 Proof of Theorem 4

Using the results above we can write

1
|Λ|

∣∣∣ln ZΛ,β(h|Λ)

ZΛ,0(h|Λ)

∣∣∣ ≤ 1
|Λ|

∑
n≥1

1
n!

∑
X1,...,Xn⊂Λ

|Xi|≥2, ∀i

[
n∏
i=1

|A(Xi)|

]
|Vc(X1, . . . , Xn)|

≤ 1
|Λ|

∑
a∈Λ

∑
n≥1

1
(n−1)!

∑
X1,...,Xn⊂Λ,a∈X1
|Xi|≥2, ∀i

1
|X1|

[
n∏
i=1

|A(Xi)|

]
|Vc(X1, . . . , Xn)|

≤ sup
a∈Λ

∑
n≥1

1
(n−1)!

∑
X1,...,Xn⊂Λ,a∈X1
|Xi|≥2, ∀i

1
|X1|

[
n∏
i=1

|A(Xi)|

]
|Vc(X1, . . . , Xn)| <∞

where in the second line we used∑
X1,...,Xn⊂Λ

|Xi|≥2, ∀i

(·) =
∑

X1,...,Xn⊂Λ

|Xi|≥2, ∀i

1
|∪jXj |

∑
a∈∪jXj

(·) =
∑
a∈Λ

∑
X1,...,Xn⊂Λ,a∈∪jXj

|Xi|≥2, ∀i

1
|∪jXj | (·)

≤ n
∑
a∈Λ

sup
j

∑
X1,...,Xn⊂Λ,a∈Xj
|Xi|≥2, ∀i

1
|Xj | (·)

and without loss of generality we fixed j = 1. This ends the proof. 2

2.8 Cluster expansion: general case

With the forest formulas introduced above we can now generalize Theorem 2 to
any interaction Jxy such that

∑
y Jxy = 1. For this purpose we resum partially

the connected graphs in wc. Using the tree formula we have

wc(X) =
∑

T∈T [X]

∫
[0,1]|T |

∏
e∈T

dse
∏
e∈T

βJe|(Sxe , Sye)|
∏
e∈EX

|we(ue(sT ))|

≤
∑

T∈T [X]

∏
e∈T

βJe
∏
e∈EX

eβJe
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where we defined e = (xe, ye),

we(u) = eβueJe(Sxe ,Sye )

and we used |(Sxe , Sye)| ≤ 1 and

0 ≤ eβueJe(Sxe ,Sye ) ≤ eβJe .

Since
∑
y Jxy = 1 we have ∏

e∈EX

eβJe ≤ eβ|X|.

Then∑
X⊂Λ,a∈Λ

|X|≥2

A(X)e|X| ≤
∑

X⊂Λ,a∈Λ

|X|≥2

K |X|
∑

T∈T [X]

∏
e∈T

βJe = K
∑

X⊂Λ,a∈Λ

|X|≥2

∑
T∈T [X]

∏
e∈T

[βKJe]

(2.8.22)
where K = e1+β(1 + O(ε)) where we used |T | = |X| − 1. For any given a ∈ Y
and any Y ⊂ Λ we define

HY,a =
∑

X⊂Y,a∈Y
|Y |≥1

∑
T∈T [Y ]

∏
e∈T

[βKJe]

With this definition (2.8.22) corresponds to HΛ,a − 1, since we consider only
subsets of Λ with |X| ≥ 2. Now HY,a satisfies the relation

HY,a =

|Y |−1∑
d=0

1

d!

∑
x1,...xd∈Y

∑
X1,...,Xd⊂Y \{a}

xi∈Xj∀j

d∏
j=1

βKJa,xj ∑
T∈T [Xj ]

∏
e∈T

[βKJe]

V (X1, . . . , Xd)

where the subset Xj must contain the point xj , the potential V (X1, . . . , Xd)
ensures the sets Xj do not overlap and d is the coordination number of a in the
tree. Finally we have the condition Xj ⊂ Y \{a} since a already belongs to the
tree. By neglecting the interaction 0 ≥ V ≥ 1 we obtain

HY,a ≤
∑
d≥0

1

d!

∑
x1,...xd∈Y

d∏
j=1

[
βKJa,xjHY \{a},xj

]
We will prove by induction on the size of Y that

HY,a ≤ e
√
β ∀Y

Indeed when |Y | = 1 then HY,a = 1 ≤ e
√
β . Let us suppose the bound is true

for |Y | ≤ m. Let |Y | = m+ 1. Applying the estimate above

HY,a ≤
∑
d≥0

1

d!

∑
x1,...xd∈Y

d∏
j=1

[βKJa,xjHY \{a},xj ] ≤
∑
d≥0

1

d!
[βKe

√
β ]d = eβKe

√
β

< e
√
β
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for β small enough. Here we used |Y \{a}| = m and
∑
y Jxy = 1. Finally

K
∑

X⊂Λ,a∈Λ

|X|≥2

∑
T∈T [X]

∏
e∈T

[βKJe] = K [HΛ,a − 1] ≤ K
[
e
√
β − 1

]
< 1

for β small enough. This ends the proof. 2
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