Mathematical aspects of phase transitions
Lecture Notes.

M.Disertori

February 10, 2015






Chapter 2

High temperature region

2.1 The O(N) model

Let us go back to the O(N) model introduced in Chapter 1. The finite volume
configuration set is denoted by

Qp = (Sy)* ={Sar: A = Sy}, Sa(z) =S, € Sy ={S eRY|||S| =1},

where A = [~L,...,L]? the energy functional is

HA(S2) = =4 3 Jo(2:5,) = 5 300 S0,

z,yeEA TEA

the interaction satisfies J;, = Jy, > 0 and h, € RY plays the role of a local
magnetic field. Since (S, S;) = 1 we can always fix J,, = 0 up to a global
multiplication factor. Without loss of generality we then set J,, = 0 in the rest
of this chapter.

In the following we denote by hy = {h;}zenr h = {hsz},eze the magnetic
field configurations in finite and infinite volume. Finally hl,, with A € RY, will
denote the constant magnetic field: h, = h Yz € A. With these conventions the
partition function is

i
Zp p(hy) :/dSA 2 Zayen oy (52:50) 3 oen(he,Sa) (2.1.1)

Boundary conditions: all the results/techniques we will see in this chapter
work for any choice of the boundary conditions. In many cases we will con-
sider periodic boundary conditions, i.e. the cube A is replaced by the torus
A, =7Z/|—L,...,L]% This choice has the advantage of respecting translation
invariance.
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Translation invariance: To simplify the formulas we will often consider
translation invariant interactions i.e.

Jm+z,y+z = Jm,y Vx,y, Z € Zd-

When periodic boundary conditions and a constant magnetic field are chosen
the measure inside (2.1.1)) is also translation invariant.

2.1.1 Observables

We are interested in the thermodynamic limit of the following functions.

Magnetization and susceptibility:

0
M3 () = iy SN [Seal = —5 ~@a(h1a) 00’ €[, N]
zeEA o
a,a’ 1 B,h1 82
Xap (h) = 1 Z EXN" [S1,0Sy,0/]c = —W@A(/ﬂ/\)
ryEA oMo’

where the finite volume free anergy ®,(hy) is defined by

L

Ppp(hy) = A InZy p(ha)
Connected correlation functions:
EXNA N Seses | = |]] In Zx 5(ha)jny=n1s
j=1 o L=t e

r0
-5 [mZAﬁ(hA)fanA,ﬁ(mA)LhA:hlA

where a; € [1,...,N].

The behavior of these limits depends on the regularity properties of the
logarithm of the partition function as A — Z?¢. We remark that the functions
above are obtained by

1. either fixing a constant magnetic field on A h, = h Vo € AZ¢ and taking
derivatives with respect to h,, of the free energy ®a g(hla) (magnetization
and susceptibility); note that A1, can be directly extended to an infinite
volume magnetic field configuration hlza;

2. or taking local variations of a constant magnetic field i.e. there exists some
finite set X}, and a vector h € RY such that h, = h Vo € A\X (since X},
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is finite this is always true if A is large enough), and taking derivatives in
hg,a,, T € X} of the function

Za,p(ha)

In

(connected correlation functions); in this last case there is no 1/|A| factor,
the partition function is replaced by a ratio and X, = {x1,...,2m}-

To encode these cases we extend the finite volume partition function Za g(ha)
to a function on infinite volume magnetic field configurations belonging to the
set

H = {he R")?|3Xy C Z% |Xp| < 0o and Ih € RN, with h, = hVz € ZN\ Xy},
(2.1.2)
by
ZA}@ : H—-R
h — ZA,B(h\A)

where h|, € (RM)A is defined by hjy = {h(z)}sea-

2.1.2 Main result

We will prove the following result.

Theorem 1 For any N > 1 there exist constants 0 < By < 1,0 < e < 1 such
that V3 < Bo

(bﬂ(h].zd) = Alinzld (I)Aﬁ(h]_/\)

exists and is analytic for h € Ben (0,€), where Ben (0,¢) = {v € CV| ||v|| < €}.
Moreover

N
(bﬂ(h].zd) = AILIIZld [H(@ha)”a] (I)Aﬁ(hl/\)

N
[H (On,)"

a=1

for any choice of n; € N. The same statements hold for

i Zpp(hjp)
Fsg(h) = lim In ———"—<.
ﬁ( ) Ainzld " ZA,B(hlA)

for any h € H with h(z) =h Va €Y, where Y is any fixed finite set.
Consequence. This result implies in particular that the free energy and all

its derivatives are continuous functions of A near h = 0, therefore there can be
no phase transition in this temperature range.
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Proof of Theorem Let h € H with h(z) = h Vo ¢ Xi. By high tempera-
ture expansions (see Section In Zp g(h)s) can be written as a sum of local
functions
hlZAﬁ h|A ZKX’H h|X
XCA
where Kx g is an infinite sum of functions F),, where each F), is (complex)
analytic with respect to {h, € (CN}_TGX as long as ||hy] <e Ve X:

Kxp(hx) = Z Y Fup(Xi,..., Xphiy).
n>1 'x ..... XpCX
U?‘ Xi=X

In Section we will see that, for 8 < [y, this sum is absolutely convergent
uniformlyin b € HOB ¢y za (0,¢). Then by Vitali’s theoremlj the limit function

Kx p is analytic in {h;}zex. Now if Jg, is translation invariant K satisfies
KX,g(hlx) = KTZ(X),,@(h]-Tz(X)) Vz € Zd, where

T: 74— 74

x—=T(x)=x+z2 T.(X) =A{T:(2)}zex.

This will become clear from the expression we will obtain for K. Then

' = [l K 5(h1x)
Jim @y 5(h15) = lim a1 D Explhlx) = lim LS Y S

ASZd
- XCA XCA zoeX
= lim & >0 >0 R . uT
ToEA XCA xczd,|X|<oo
roeX ex
(2.1.3)

where in the last line we used translation invariancef

Kxp(hlx) = Kr_, (x)s(hlr_, (x))-

Moreover
lim [In Zp g(hjp) —1InZ hl =1 K hy)— K hl
Jim [0 Zy 5 (B ) = Zap(h1j)] = Jim ;g% [Kxp(hx) — Kxg(hlx)
XNXn#0
= Z [Kx,p(hx) — Kx g(hlx)] (2.1.4)
xczd,|X|<oo
XNXp#0

I Convergence Vitali Theorem: Let D be an open connected set of C, f, a sequence of
analytic functions in D, locally uniformly bounded such that the sequence converges on a set
with some accumulation point in D. Then f, converges locally uniformly in D. The limit is
then an analytic function.

2In the non translation invariant case this equality becomes an inequality:

K h1
| hm ®p,5(h1p)| < sup Z %\X)

wo ezt xczd | X|<oco

zoEX
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since Kx g(h|x) = Kx g(hlx) VXNXy = (), where Xy, is a finite set depending
on h. This result holds also for non translation invariant interactions. We will
see in the next section that converges uniformly in h € Ben(0,¢) and
(2.1.4) converges uniformly in

{he Hhe B(CN)W (0,e) and X =Y}

for any fixed finite set Y. Then both limits are analytic functions. Finally, by

Cauchy formula (27 f"(z) = f,y %) and analyticity of the limit functions,

the thermodynamic limit (limy_,7¢) commutes with all derivatives in h. m]

2.2 The limit case: infinite temperature.

When 8 =0 (i.e. T = o) the partition function factors
Zno(ha) = H/dS elhe:S2) HZxo HZOO
€A €A zeA

where Z, o(hs) = Zoo(hs) (x = 0 is the origin in Z9) is analytic on CV and
bounded away from zero for h, € Ben (0,¢). Therefore In Z, (h,) is analytic in
Ben (0,¢). In the same way for each Y C Z¢ with |Y| < oo the function

InZxo(ha) = > InZyo(ha) + (A = [Y])In Zo o(h)
zeY

is analyticin {h € H| X, =Y and h € B oy (0,e)} and

hm q)A’O(hlA) = ln ZO,O(hx) — ln/dsoe(h,so)
A—7Z4

Jim [0 Zy o (bys) = In Zy o ()] =Y I ;f’o(é))-
z€Y

are analytic functions too. When 0 < 5 < 1 we expand around the case 5 = 0.

Therefore in the following we concentrate on

ZA75(h|A) _ ZAﬁ(hlA) (2.2.5)

Zaothn)  Tleen Zop(ha)

where we used Z, g(hg) = Zg,0(hs).

2.3 Preliminary combinatorial definitions and re-
sults.
For simplicity we state all definitions and results using A and X finite subsets

of Z%, but everything can be generalized to any (finite or infinite) abstract set
of points (not necessarily in Z%).
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Edges and paths. The set £y of all possible undirected edges connecting pairs
of points in A is denoted by

En=A(z,y)le #y €A}, with (z,y) = (y, ).

A simple path 45 of lenght n starting at a and ending at b is a subset of Ep
Yab = {€1,.. . en} CTEA
such that there exist z1,...x,_1 points in A satisfying
e1 = (a,x1), ea = (x1,22),...,n = (Tp_1,b).

With this definition each edge of £4 can appear only once in the path (we never
travel on the same edge twice). When a = b we say that 74, is a closed path
(also called cycle or loop).

Graphs. A graph G is a pair (X, E), where X C A and E C Ex. A graph
G = (X, E) is connected if for any pair a,b € X there is a simple path ~,, made
of edges in E connecting a to b. A graph G = (X, E) with no cycle is called a
forest on X. A connected graph G = (X, F) with no cycle is called a tree on
X. We will denote by

GIX]={G=(X,E)| ECéx}  F[X]={G € G[X]| G has no cycle}
G.[X] = {G € G[X]| G connected} T[X] = {G € G.[X]| G has no cycle}

the set of graphs, connected graphs, forests and trees on a fixed set X.

Connected components. FEach graph G = (X, E) can be associated to a
unique partition P € P[X] of X into subsets such that

(Y,ENé&y) €G.[Y], VY € P, and
aeY,beY, withY,Y' € PY #Y' = (a,b) & E.

The elements Y in the partition are called connected components of G.

Characterization of a graph. A graph G = (X, F) can be uniquely deter-
mined by giving the following information:

1. a partition P € P[X] (fixes the connected components) and

2. for each Y € P a connected graph g € G.[Y] (this fixes the edges inside
each connected component).

In the same way a forest F' € F[X] is uniquely determined by giving the follow-
ing information:

1. a partition P € P[X] (fixes the connected components) and

2. foreach Y € P atree T € T[Y] (this fixes the edges inside each connected
component).
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Functions and connected functions. Let Pay = {X C A} the set of all
subsets (parts) of A. Let ¢ be some function on Pap

¥: Par - R
X = p(X) -

Lemma 1 There exists a unique function 1. : Pap — R satisfying the equation

= > ] ¢tv VX € Pay. (2.3.6)

PeP[X]YEP

Proof. The proof is done by induction on the size of X. Let |X| = 1, then
P[X] = X and ¢.(X) = ¥(X) is the unique solution. Now let us suppose there
is a unique solution for the equation for any set Y with |Y| = n. Let | X| = n+1.

Then can be writte an
VX)=ve(X)+ > [ ey

PEP[X]\X YEP

The second term contains only sets Y with |Y| < n then by the induction
hypothesis all factors 1.(Y) have been uniquely determined already. It remains
only ¢.(X), hence

eX) =)~ 3 [ vy
PEPIX]\X YEP

is the unique possible choice. This ends the proof. O

2.4 Setting up the expansion

Lemma 2 The finite volume partition function can be written as

Zngthpp) = > ] Ax with (2.4.7)

PeP[A] XEP
- / IT dve(Sa)we(X), (2.4.8)
zeX

where P[A] is the set of all possible partitions of A into (not necessarily con-
nected) subsets,

dv, (Sz) = 45, ehe:Se).
the interaction term w.(X) is the unique solution of -2.3.6 with ¥ (X) replaced
by

wX)= [ ePertsesy
z<yeX

and we have introduced some fized ordering < on the set X.
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Proof. With the definitions above the partition function is written as

Zpp(hyp) = / I dve(Sz)w(A).

zEA

By ([2.3.6) there exists a unique function w, solution of

wX)= > ] w(¥).

PeP[X]YeP

Each function w.(Y") depends only on spins S, with 2 € Y. Therefore the
integral factors

Znplhp) = Y / IT dve(Se) I wel)

PeP[X]” zeX vepP
- Y I [/dex(Sx)wc(Y)
PeP[X]|YEP TEY
This ends the proof. O

Lemma 3 The ratio of partition functions (2.2.5) can be written as

Zap(hja) 1
m*”ia > {TAX) | VX, X)) (249)

[n
A n>1 " Xq,...XnpcA Li=1

where the amplitude is defined as

A(X)

AR = L A

A({z}) Z/dV(S’m) :/dgxe(hm,sm,

and V implements the non-overlapping condition for the sets X;

1 XNnX' =0

0 xnx g (2410

V(X1 X)) =[[V(X, X)), V(X X)= {

i<j

Proof. We remark that

H Zac,O(ha:) = H H Zx,O(hx)v and Z;c,O(hx) = A({z})

zeEA XePzeX
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Then using Lemma [2{ and (2.2.5) we have
Znp(ja) A(X)
k) — A
Zvotn 2 W aien = 2 1

> Maw-Ty T [ﬁmx»]

PeP[A] XeP n>1 w X1, i=1
[X|>2 \X|>2XmX =0Vi>j

HA

V(X1,..., Xn)

I
-
17
]

where we used A(X) =1 whenever |X| = 1. This ends the proof. O

Functions and connected functions. For each given sequence of subsets
X = {X;}ien, Xi C A, the interaction V defined in (2.4.10) can be seen as a
function on Pay = {I C N}:

V: Pay —> R
I—=V(I)=V{Xi}ier)

Then by Lemma [2| there is a unique function V. : Pay — R such that

= > J[wa (2.4.11)

Tep(n) I'€T
With this definition we can state the main result.
Lemma 4 The logarithm of the ratio (2.2.5) can be formally written as

1nZAO Z Z [HA

n>1 ----- XnCA

Vo(X1,. . Xn)  (2.4.12)

where, V. is defined in (2.4.11)) abowve.
Proof. By (2.4.9) and (2.4.11)) above we have

CE R | SN |

a1V x, xnea [{1,..n}]] T€T

=14y > %HA(I)

n>1ZeP[{1,..n}]  I€T
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where

>
=
I
g
<
—
=

> Vel Xitien) [T AKX

X;CA el i€l X;CAiel i€l
|X:|>2 [Xi]>2
17|
= Y VuXy,.., X)) HA A(|1))
X1, X 7 CA
|Xi[>2

and in the last line we relabelled the sets {X;};cr. The expression then depends
only on the number of elements inside I.

Each partition Z € P[{1,...n}] can be uniquely identified by the three
following ingredients:

1. the number k = |Z| of components in the partition 1 < k < n;

2. the cardinals of each component i.e. k numbers nq,...ny satisfying n; > 1
and Z§:1 n;=n

3. k subsets Ir,...,I; of {1,...n} satisfying I, = n; Vj = 1,...,k and
ILinly=0Vvj+#j.

Then A(I) depends only on |I| = n;. The formula above becomes

ZABh\A 1 b
m—HZZ 2 > llAam

n>1k=1 ny,..np>1 Iy, .. I CA|Ljl=n; j=1
Ef Lnj=n I; m.,:wv;‘;éj'

"1
:1+ZZE Z H Anj —1+Zk'Ak—e
n>1k=1"" nj..np>1 j= 1" k>1
Zf 1 =N

A=>" %A(n)

n>1

where we defined

and we used the following relations

card{Iy,... Iy C Al || =ny¥j, ;0 Ly =0 # 7'} = k']_[:'n'
DD O=D>0) YD = >0

n>1k=1 k>1n>k n>k ny,..np>1 ny,...ng>1

Z?:l nj=n

Therefore A is the formal logarithm of the ratio of two partition functions.
Inserting the definition of A(n) we obtain

A= an Yoo VX, LX) [JAK

|Xi|22
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This ends the proof. a

Remark 1. While the sums and are finite, the expression in
is an infinite sum, hence the formula is exact (and not just formal) if
we can prove that the sum is absolutely convergent. This will be done in the
next subsection.

Remark 2. The connected functions w, and V. appearing in (2.4.7) and
(2.4.12)) can be expressed as sums over connected graphs. This is showed in
the next lemma.

Lemma 5 The connected functions w. and V. in the lemmas above can be ex-
pressed as

we(X) = > Jlwe—1],

GeG.[X]e€E

VX1, X)) = > J[ve-1

GeG.[{1,....,n}] e€EE
where
We = w(xeaye) = ePJecve(SeerSye)

1 X;,NnX,, =0

Ve = V(ievje) = V(Xiﬁane) = { 0 X, ﬂXj ?é 0

Proof The interaction term in the partition function can be written as
B

w(A) = e2 2oyen Jou(S2:5y) — H We = H [1+(w.—1)] = Z H [we—1]

ecEp e€Ey G=(X,E)egG[A] e€E

where we used J,, = 0. Now each graph can be uniquely determined fixing a
partition P € P[A] and a connected graph g € G.[X] for each component X € P

(see subsect[2.3). Then
vy => I} > [lw-D
PEP[A] XEP | g=(X,E)EG.[X] eEE

This is then a solution of w(A) = 3~ pcpa [Ixep we(X). The solution being
unique we have the result. The same arguments apply for V. O

2.5 Convergence of the log expansion

To prove the convergence of (2.4.12)) we will need three separate steps. The first
(Thm. [2| below) depends on the details of the model we are considering, while
the last two are model independent.
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Theorem 2 There exists a By > 0 such that VB < Bo

sup > JAX)]elX! < 1. (2.5.13)

d
A€l x c7d 2<| X | <o0,a€X

The result is true for any d > 1, for all N > 1 and for any interaction Jy, such
that sup,eza 3y eza Joy < 00.

Theorem 3 If ([2.5.13) holds then for any fized point a € A the sum

|AXY)|
=D x| » H|A | Ve(X1,. .05 X0
n>1 X1CA 1 Xo,..os XnCA L1=2
[X1]>2,0€ X [X:|>2vi
(2.5.14)

s convergent uniformly in the volume A and in the point a.

Theorem 4 If (2.5.14) holds then the series

]. ZA[} h‘A o
Wln Zpo(hjy) \A| Z n! Z [HA

Ve(X1,..., X5)

converges in absolute value uniformly in A.

Remark. The same arguments hold to prove convergence of the analog ex-
Za,p(hja)

pression for In I GOVE

2.6 Cluster expansion: special case

In this section we will prove Theorem [2]in the special case when

supz Jif < 00.
Let h, € Ben (0,€). Then

eﬂ?hS
el < [ TT St e

reX

Since h, is small we have
|[A({z})] = ‘/dswe(hl?sm] =1+0(e?), @5 =14 0(@).

Moreover

jwe(X)| < Z H lwe — 1] < Z H BJ,ePe

9=(X,E)€G.|X] e€E 9=(X,E)€G.|X] e€E
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where we used |e® — 1| < |z]el*l, |(S,,S,)| < 1 and we abbreviated J, = J,,
for each edge e = (x,y). Then

A< KX S T et

g=(X,E)€g.[X]ecE

where K. =14 O(e). We will need the following two remarks.

Remark 1. Choosing a connected graph g = (X, E) is equivalent to

1. choose a set of points X and

2. choose a set E C Ex such that (X, E) is connected.

Definition. We define a path in A of lenght n starting at a as a set of n + 1
points v = {xo, ..., x,} such that g = a. The path may use the same edge of
E) several times. Let W' the set of paths starting at a of lenght n.

Remark 2. Each connected graph g = (X, E) with a € X and |X| > 2 can
be associated to a (non unique) path v, = (o, .., 72g|) € w2lEl starting at a
of lenght n = 2|E| such that

1. (zj,zj41) € EVj=0,...,n—1 (the path contains only edges in E) and

2. each edge e = (z,y) € g appears exactly twice in the path (crossed in
opposite directions): 3j # k such that (z;,z;41) = (z,y) and (zg, Tp41) =
(v, ).
This can be seen by induction on the size of the set (see [3]). When X = {xz,y}
contains only two points then the only connected graph is e = (z,y) and the
unique path is given by v = {ej,ea} with e = (z,y) and e; = (y,z). Now
suppose the statement is true for G = (X, E) a connected graph on X and let
~vc be the corresponding path. Let us add one point y to the set X and let £’
the set of lines we add to E in order to obtain G’ a connected set on X U {y}.
To construct a path g we choose one edge in E’ and add it to g twice, so
that we cross it in both directions. This completes the construction.
Now with these remarks we can write

oA < S ek et

xczd,aeX 9=(X,E)€Gc[X] ecE
2<|X <00 |X|>2,0a€X
DD SINCEL | (2
n>1 g=(X,E)E€G.[X] ecE
|E|=n,,a€X
2n—1
< [GKE] Z Z [61+5K5ﬂ]" H J;j/gj-u
n>1 ’YGW&" j=0
n cp
<[eK.] ) [CB" = [eKs]m <1

n>1
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where we used | X| < |E|+1, J. <1 and we defined
2
C ="K, [Stwlpz J;f] .
y

The last line holds if § is small enough. The sum over paths is done starting
from the end point

2n—1 2n—1 2n
/2 _ 1/2 1/2
> ML =22 I 7ai < [S“pz% ] '
yew?n j=0 x Ton j=0 Yoy
This ends the proof. O

2.7 Polymer expansion

In this section we will prove Theorem |3| If we try to apply the same strategy
as in the previous section, by Lemma [2| we can bound

Vo(X1,..., X)) < > JIIve=1]l,  where [[V. —1]] =0,1.
GeG.[{1,....,n}] e€EE

In the special case when X; = Xo = --- = X, we have |[V, — 1]| = 1 for any
ec E{l,...n}~ Then

ST JT Ve = 1] = card Ge[{1,.....n}] = 0(2™).

GEG.[{1,....,n}] e€E

On the other hand the contribution from 3y ,c  [A(X)[" is at best p™ for some

p < 1. Then we have
P" on
Z —2" = +o0.
n!
n>1
The solution to this problem is to partially resum the connected graphs in V..

The resummation must garantee that:

1. we keep explicitely a set of lines ensuring the graph is connected (the
minimal structure ensuring this is true is a tree);

2. all possible choices of additional lines are resummed (any additional line
will create a cycle in the graph);

3. since the same graph can be obtained by different tree graphs by adding
the necessary number of loop line we must ensure we do not count the
same graph twice.

The advantage is that choosing a tree costs only a n! factor instead of 27", The
next subsection contains the tools needed to perform these operations rigorously.
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2.7.1 Resummation of the connected diagrams.

Most of the material presented in this section is based on [2] and [IJ.

The smallest connected diagram on some abstract set of points A is a tree
graph. Now let P € P[A] be a partition of A. The smallest graph compatible
with P (i.e. whose connected components are the elements in P) is a forest.
Therefore a forest is the minimal amount of lines (information) we need to
garantee that the elements in P are connected. The following formula allows to
extract forests from sums over general graphs in a consistent way.

Theorem 5 (Brydges—Kennedy-Abdesselam-Rivasseau Forest formula)
For any finite abstract set of points A let u = {ue}ece, € [0,1]54. For any func-
tion f :[0,1]%* — C with continuous first derivative in each u. we have

f(l) = Z / H dse [H 8ue‘| f(u)|u(sF)
Fera] Y 0P e R el
where 1 = u, =1 Ve € Ex and for any e = (z,y)

0 if x,y not connected by F

Uy (5P) = { infee,,, (r)Se  otherwise (2.7.15)

and vz (F') is the unique simple path made of edges in F' connecting x to y.

Proof We will prove the analog formula for ordered forests

|F|

=3 5 [ Tass |T[ow, | S0y 2710
nZOF\;T;[vAL] An =1 j=1

where F[A] is replaced by F,[A] the ordered forests F' = {e1,...ep} and
A =A{(s1,82,..,8n) €[0,1]"[ L 251 2 55 > -+ > 5, 2 0}
The sum over unordered forests can be obtained by remarking that

2 /A N /[o,l]F '

orders

The formula (2.7.16)) is proved by iteration on the number of edges in the forest.
To encode the different steps it is convenient to introduce the function

x: P[] —[0,1)%
P — XP

1 f3XePzyeX

where xp(e) = xp(z,y) = { 0 otherwise

and (z,y) are the two points attached to e. In the special case when the partition
P contains only one set P = A we have ya(e) = 1 Ve € Ey. Now let F}
(j =1,...,n = |F]|) be the forest containing only the first j lines (eq,...,¢€;)
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of F, and let Pr, € P[A] be the corresponding partition of A into connected
components. Then F,, = F' and we have

u(sp,) = sn(XPr, — XPr

n—1

) + Sn—l(XPFn_l - XPF,,,_Q) +oe Tt S1XPp, -

To prove this identity let v, (F) = (Ij,...,1;,), j1 < j2 < -+ < jp be the
path in F' connecting x to y (for any pair (z,y) connected by F'). Then (z,y)
are connected by F; Vj > j, but they are not connected by Fj, 1. Therefore
XPr, (z,y) = 0 when j < j, and XPr, (z,y) = 1 when j > j,. Inserting this in
the expression above we obtain u(sr, )(z,y) = sj, = infee,,, (F) Se-

To set up the iteration we introduce for any forest F,, = {e1,...,e,}, n>1
the function

VA — [0, 16
(81y-+s8n+1) — U(S1,..., Snt1)
where
W(S1,- s 5n41) = Snr1(Xa — XPr, ) + u(sF,)- (2.7.17)

For the first iteration step we define
@ : [0,1] —[0,1]%a
$1 — u(s1) = s1xA-
With these definitions u satisfies
Unt1(S1, - -y Sny Sn) = Un(S1,...,8n) Vn>2. (2.7.18)

Now we can start the proof of (2.7.16). Since 1 = @;(s; = 1)

f(l) f(Ul(Sl))\sl 17f(u1(31 |s1= 0+/ dsy Z auplf |1 (s1)

e1€E)

Using (2.7.15) f(@1(81))s,=0 = f(0) = f(u(sp—p)) is the contribution from the
unique forest with no line |[F'| = 0. Then the formula above can be written as

F) = flu(sreg)) + S0 / dsi [T O F(0) o)

F1E€Fo[A] 0 ecF,
[F1|=1

To prove the induction step let us suppose

Z Z / HdSJHGuEf U)ju(sp)

n=0 FeF,[A] ”] 1 ecF
|F|=n

+ Z / HdS] H Ou, f(u \uq 81,004,8q)

Fgq€FolA] ‘1] 1 ecky
|Fl=q
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Using (2.7.18) (2.7.17)
Ug(s1,...,8q) = Ugs1(51,.--,5q,5q)s Ugy1(51,...,8¢,0) = u(sr,),
hence

H augf(u)\ﬂq(sl,...,sq) = H augf(u)|u(5pq)

e€ly e€ly

+\/C; d5q+1 Z H auef(u)lqu+1(81,..47sq+1)

€q+1 ec Fq+1

where Fy41 is the forest with lines eq,...eq41. If Pr,_, = A, i.e. the forest is a

q+1
spanning tree on A then ya = XPr, ;>

Ug+1(515- -5 8q+1) = u(sF,,,)

and the induction stops. This ends the proof. |
In order to apply this formula to V, we will need the following additional
definition.

Definition: factorization. We say that a configuration u € [0, 1]** is factor-
ized on a partition P € P[A] if u, = 0 for all e edges connecting two differents
sets in P:

Uy =0 fIX#X €eP,xeX,yeX.
We say that a function f : [0,1]* — C has the factorization property if for any
partition P € P[A] and any configuration v factorized on P

fw) =T fx(ux)
Xep

for some functions fx : [0,1]¢X — C. Here ux is the restriction of u to x.
With this definition we have the following two lemmas.

Lemma 6 Let f :[0,1]°* — C be a function with continuous first derivative in
each ue and with the factorization property. Then

= > 11| X /[Ol]THdse [Haue] Fx (Ux)u(sr)

PeP[A] XEP | TeT[X] eeT

Proof Direct application of the definition of a forest as a partition P € P[A]
plus a tree graph inside each connected component X € P. |

Lemma 7 The connected function V.(1,...,n) introduced in (2.4.11)) can be
written as

Vc(Xla-”aXn): Z Ao i Hdse

TeT|{1,...,n}] ecT

[Tve-1

ecT

[T Ve tue(s2)))

egT

(2.7.19)
where
Ve(ue) = [1 4+ ue(Ve — 1)] (2.7.20)
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Proof Using (2.7.20) we define

This function satisfies f(1) =[], Ve and f(0) = 1. Moreover f is differentiable
in all u, and has the factorization property. Hence we can apply Lemma [f]
above. Since

[H 3%1 Ix(ux)juesr) = H[Ve —1] H Ve(ue(sT))
ecT ecT egT

we obtain the result. O

2.7.2 Proof of Theorem [3l

This proof is mostly based on [I]. We insert the formula (2.7.19) above inside
(2.5.14)

Ve(X1,.. . X))l < )0 / lT‘Hds€H|V—1|H|V Uue(s7))
ecT

ecT eZT

since

0 < [Ve(ue(sr))] = [T +ue(Ve = 1] < 1.
Then (2.5.14]) can be bounded by

S USRS S gp U e

X1 CA,|X1]|>2, n>2TeT[{1,...,n}] X1 CA,|X1]>2
a€Xy a€eX

> [Hm ]Hmu

Xg,....XnCA Li=2 ecT
X, |>2vi
In order to fix a tree T € T[{1,...,n}] we need three ingredients:
1. di,...,d, > 1 the coordination number of each vertex i = 1,...n (i.e.

number of lines in T" hooking to 4); the choice of these numbers must be
compatible with a tree structure;

2. a tree with fixed coordination numbers d;. .. ,d,, T € Tq,

The sum over trees above can be reorganized as

0= > O Y miaem, . sw ()

(1o, T fized  {dyTo, TAdi Yoy fiwed
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where we used Cayley’s theorem
(n —2)!
H?:l(dj - 1)!.
Then the terms corresponding to n > 2 in are bounded by

Y Y ;ﬂ[ﬁ(g;f;;,]n|vel

n>2dq,...dn T{d;};j_, fized X1, XnCA i=1 eeT
| X:]>2, ae X,

card[T, {d;}7_; fized] =

For a fixed tree we call X; the root and all points with d; = 1 (except eventually
the root) are called leaves. For each point j there is a unique path in 7' going
from j to the root. Note that the choice of the root is arbitrary. Therefore
we can perform the sum over X; recursively starting from the leaves and going
towards the root. For any fixed point j let e; = (X}, X4(;)) the unique edge in
the tree going from j towards the root. We call a(j) the ancestor of j in the
tree.

When j is a leaf e; is the unique edge touching j. Therefore X, appears
only in A(X;) and in V. Keeping X,;) fixed

ZIA ||1—VeJ|—Z|A ML=V(X, Xap)l = Y JAX)

X5, XN X o) #0

<[ Xay| sup D JAX)] SIXa(j)|§uR Y AGIXE

beXat) X, bex; €A x; bex;

where we used d; — 1 = 0 since j is a leaf. After completing the sum for each
leaf we pass to the next point j° = a(j). Since each leaf attached to j' brings a
factor | X;/| we will have to estimate

Z|A ||X |d/ 1‘1_ e/|— Z ‘A(Xj/)||Xj/|dj/71

X v ,Xj/ ﬂXU,(J/)i(D

< [Xagn|sup > TAGG)IX 4t

Xj/ ,bEXj/

We repeat this operation for every vertex except the root. Finally for the root
we have

S JAX)IIX BT <sup Y A1 X B!
X1,aeX: beA ¥ hex,

Note that these bounds now depend on dy,...,d,, but not on the specific tree,
so the supy is trivial.

Then ([2.7.21]) is bounded by
> 00,

n>1
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where we used
X d:—1 )
Ssp Y AE)EE S = Y AN < p <t
d;>1 €M X, cAbex; beA x Amex,

uniformly in A by Theorenf2] and

A(X
. A,
bEA ¥, cAbeX, | X1
for the contribution from n = 1. This ends the proof. a

2.7.3 Proof of Theorem {4

Using the results above we can write

1 Zx,p(ha) 1 -
LT ES D IE IS [H A | [VelXa, -, X
n>1 X1,y XnCcA Li=1
1X|>2, Vi
1 1
AYY Y [Hmn Ve )
acAn>1 X14ee XpCA,a€Xq i=1
1Xi[>2, Vi
SsupZﬁ Z [H [ Ve(Xq,. .oy X)) < o0
aeAnZl xl,...,xnc/\,aexl =1
1Xi|>2, Vi

where in the second line we used

o= Y ok Z => > wx

X1yeen XpnCA X14ees XnCA acU; X a€EN X1,..., XnCA,a€U; X
\X |>2, Vi \X |>2, Vi | Xi|>2, Vi

<n) s Y ()

acA 7 Xq..XnCAaex

and without loss of generality we fixed j = 1. This ends the proof. O

2.8 Cluster expansion: general case

With the forest formulas introduced above we can now generalize Theorem [2| to
any interaction Jg, such that Zy Jzy = 1. For this purpose we resum partially
the connected graphs in w.. Using the tree formula we have

Z /o 117! H dse H ﬁj@KSwe’Sye”H |we (e (sT))

TeT[X] [ ecT ecT e€fx

SOINIEA | K

TGT[X JeeT e€fx
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where we defined e = (z, ye),
we(u) — eﬂuet]e(smeasye)
and we used [(S;,,S5,, )| <1 and
0 S eﬂueJe(Sweasye) S eﬁJe.
Since _, Jzy = 1 we have

[T - < %1,

ecEx
Then
Y oA YR Y [[an=k Y Y [Tk
XCA,a€A XCA,a€EA TeT[X]eeT XCA,aeATET[X] e€T
|X]>2 [X[>2 |X|>2

(2.8.22)
where K = e!*#(1 + O(¢)) where we used |T| = |X| — 1. For any given a € Y

and any Y C A we define
> > sk

XcY,aeY TeT[Y] e€T
lY[>1

With this definition (2.8.22)) corresponds to Hj , — 1, since we consider only
subsets of A with |X| > 2. Now Hy, satisfies the relation

[Y]-1

Zd; > > H BKJue, . [[IBEI]| V(Xy,...

T1,...24€Y X1,....XgqCY\{a} j=1 TeT[X,]e€T
r; €X;Vj

where the subset X; must contain the point x;, the potential V(Xq,..., Xy)
ensures the sets X; do not overlap and d is the coordination number of a in the
tree. Finally we have the condition X; C Y\{a} since a already belongs to the
tree. By neglecting the interaction 0 > V > 1 we obtain

d
1
Hy,, < Z a Z H [BK Jao; Hy\{a} 2]
d>0 z1,..xq€Y j=1
We will prove by induction on the size of Y that
Hy,<e'? vy

Indeed when Y| =1 then Hy, =1 < eVB. Let us suppose the bound is true
for |Y| <m. Let |Y| =m + 1. Applying the estimate above

d
Z 1 1 VB
Hya s d! Z H[BKJa’ijY\{a}@j] = Z a[ﬁKe\/B]d = e <e

d>0 " m1,..34€Y j=1 d>0

7Xd)
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for # small enough. Here we used [Y\{a}| =m and } Jo, = 1. Finally

K S > [IBKL=KHya - 1<K [P —1] <1
X&AIESA TeT[X]eeT

for 8 small enough. This ends the proof. |
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