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Vertex-reinforced jump process (VRJP)

» Let G = (V, E) be a locally finite, undirected graph without
direct loops. The undirected edge i ~ j is given the weight
VV,'J' > 0.

» The vertex-reinforced jump process Y = (Y,),>0 is a process
in continuous time where given (Y5)s<, the particle jumps
from site i to site j ~ i with rate

Wi (1 + Lj(u)),

where s
Lj(u) = /0 1{Ys:j} ds

is the local time at j.
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» Conceived by Wendelin Werner.
» [Davis-Volkov 2002,2004]: finite graphs and trees.
» [Collevecchio 2009], [Basdevant-Singh 2010]: more on trees



An important discovery

Let B B
Y = (Yn)nGNO

be the discrete-time process associated with the VRJP Y by
taking only the value of Y, immediately before the jump times.

Theorem (Sabot-Tarres 2011)
On any finite graph, (\N/,,),,GNO is a mixture of reversible Markov

chains.



Mixture of reversible Markov chains
On any finite graph, the discrete-time process Y associated with
the VRJP is a mixture of reversible Markov chains. This means:
» Set X = (0, 00)E.
> X 3 x = (Xj)(i~j)eE are weights on the undirected edges of
the graph G.
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the discrete-time Markovian random walk, starting at iy, with
transition matrix
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There is a unique probability measure IP’}SV on X, depending on the
starting point ip and the weights W = (W;;)(j~jjce € X of the
VRJP such that for any event A C VMo one has

P ¢ ) — /X QIS (A) PYY (dx).



Description of the mixing measure

Theorem (Sabot-Tarres 2011)

The mixing measure }P’}gv can be described by putting on the edge
i ~ j the weight
Wie" ™

with (u;j)icv distributed according to (a marginal of) Zirnbauer's
supersymmetric (susy) hyperbolic non-linear sigma model.

» introduced by Zirnbauer in 1991.

» Zirnbauer writes that it may serve as a toy model for studying
diffusion and localization in disordered one-electron systems.

» Original form involves Grassmann variables.

» Present version: Grassmann variables replaced by spanning
trees.



The supersymmetric hyperbolic non-linear sigma model

Let Q, ={(u,s) e RY xRV : u;, =5, = 0},
T = set of spanning trees of G.

u}g‘/ is the following probability measure on Q;; x 7

w
dM/o (U, S, T)
1
= H exp {—W,-j [cosh(u,- —u)—1+ 5(51' _ sj)zeu,-+uj] }
(i~j)eE
—u;
euitu €Y dujds;
I wgerts I == 4T,
(i~m)eT jeV\{io}

where du; and ds; denote the Lebesgue measure on R and dT is
the counting measure on 7.



Interpretation of the supersymmetric sigma model

(c(u)Wje ™) injeE

with c(u) =1/(3(iwj)ee Wije"T4) can be interpreted as the
asymptotic fraction of time the discrete time process associated to
the vertex-reinforced jump process spends traversing the edges of
the graph G.
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(c(u)Wje ™) injeE

with c(u) =1/(3(iwj)ee Wije"T4) can be interpreted as the
asymptotic fraction of time the discrete time process associated to
the vertex-reinforced jump process spends traversing the edges of
the graph G.

In a work in progress with Franz Merkl and Pierre Tarres, we give
an interpretation of the other variables s and T in terms of the
asymptotic behavior of a time-changed version of the
vertex-reinforced jump process.

» T corresponds to the last exit tree,

» s corresponds to fluctuations of the local times spent at the
vertices around their limit.

Even more, we provide an extension of the susy model having ,u,‘-gv
as a marginal.



Key results on the supersymmetric sigma model

The following results were shown for the susy model on Z¢ with
constant Wj; = W:

Exponential localization
» for d =1 and all W
[Zirnbauer 1991] and [Disertori-Spencer 2010]
» for d > 2 and small W
[Disertori-Spencer 2010]
Quasi-diffusive phase

» for d > 3 and large W
[Disertori-Spencer-Zirnbauer 2010]



Recurrence and transience on Z9

Consider the graph Z¢ with constant weights W.

The previous connections were used to prove a phase transition for
the vertex-reinforced jump process for d > 3:

» [Sabot-Tarres 2011]
recurrence for d > 2 for small weights W

» [Disertori-Sabot-Tarres 2014]
transience for d > 3 and large weights W



The supersymmetric sigma model on a strip

» Consider G = 7Z x G with a finite connected undirected
graph G.

» For L = (L, L) € N? consider large finite pieces

GL={-LL}xG

0
» Endow G with translation-invariant edge weights W;.



The supersymmetric sigma model on a strip

» Consider G = 7Z x G with a finite connected undirected
graph G.

» For L = (L, L) € N? consider large finite pieces

GL={-LL}xG

0
» Endow G with translation-invariant edge weights W;.

» Fix one point 0 = (0, p) at level 0.

» Extend G and G; by adding a vertex p which is only connected
to 0. Denote the new graphs by G” and G/.

> Let u(‘]/f/L denote the susy measure corresponding to Gf.



Exponential localization

For I € Z, let ¢ := (I, p) denote the copy of 0 = (0, p) at level /.

Theorem (Disertori, Merkl & R. 2014)
For all L= (—L,L) and | with —L < | < L, one has

ug—ug _
E w {e 2 } < crell
Ho,L

with constants c1(G, W), c2(G, W) > 0.



Existence of an infinite volume limit

Theorem (Disertori, Merkl & R. 2014)
There exists a probability measure

/L(lf/oo on RV x RV

such that for any bounded random variable O depending only on
finitely many u;, s; we have

£ 01— Eg [0] a5 L=(~L.T) - (~o0,+0).



Corollary 1 for VRJP on the infinite graph G”

Using the result from Sabot and Tarres, our exponential decay for
the sigma model has the following consequences for the
vertex-reinforced jump process (VRJP):

Corollary (Disertori, Merkl & R. 2014)

The discrete time process associated to the VRJP on G is a
mixture of positive recurrent irreducible reversible Markov chains.

The mixing measure for the random weights is given by the joint
distribution of

(Wie™ ) injyege

with respect to ji’. .



Corollary 2 for VRJP on the infinite graph G”

Corollary (Disertori, Merkl & R. 2014)

For the discrete-time process (Yp)nen, associated to the VRJP on
GP, one has

sup PPV, = i) < el forallie V,
neNg

.....

with constants c3(G, W), ca(G, W), c5(G, W) > 0.



Ideas from the proof

. t—ty _
Key estimate: EM[\]/VL {e 2 } < cre ! where

dl'L(‘)/E/L(u7S’ T)
1
— H exp {_VVU |:COSh(U,‘ — LIJ) —1 + 5(SI. _ sj)Zeu,--i-uj] }

(imj)EE
U du;ds;
[T Wyets - Woyetoe Moo T] S-S ’27:’1 54T
(i~j)eT jev

Strategy of the proof:
> Use a transfer operator approach.
» We need a local description of the spanning trees for every
“slice” of the graph.
» The proof has some similarities with the first recurrence proof
for linearly edge-reinforced random walk on Z x {1,2}
[Merkl & R. 2005].



Linearly edge-reinforced random walk (ERRW)

Fix weights a;; > 0, (i ~j) € E.
Linearly edge-reinforced random walk is a discrete-time process
(Xn)nen, on G starting in io.

The reinforcement is encoded in time-dependent weights w;;(n),
n € Ny, on the undirected edges (i ~ j) € E.

> Initial weights: w;;(0) = aj;

» Each time an edge is crossed, its weight is increased by 1:

wii(n + 1) = wii(n) + 1{(X,~Xo 1) =(i~)}-
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(Xn)nen, on G starting in io.

The reinforcement is encoded in time-dependent weights w;;(n),
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» Each time an edge is crossed, its weight is increased by 1:
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The process jumps with probability proportional to the edge
weights: For j € V, n € Ny,

TTW . wx,j\n
PrE (Xppr = X0, -+ Xn) = (")

a Li(x.mneEL-
Z(Xn~1<)eE wx, k(n) {(Xn~j)€E}



ERRW as a mixture of Markov chains

» ERRW was introduced by Diaconis in 1986.

» Pemantle in his thesis writes that Diaconis asked him about
recurrence and transience of the process on Z9, d > 1.
[Pemantle, 1988] showed a phase transition between
recurrence and transience on a binary tree.

It has been known for a long time that ERRW on any finite graph
is a mixture of reversible Markov chains. The mixing measure can
be described as a joint probability law on the set (0, 00)€ of edge
weights of the graph.

» ERRW is partially exchangeable. Hence one can apply de
Finetti theorems: [Diaconis-Freedman, 1980], [R., 2003]

» “The magic formula”: [Coppersmith-Diaconis, 1986],
[Keane-R., 2000], [Merkl-Ory-R., 2008], [Sabot-Tarrés-Zeng,
2016], ...



Results on ERRW

Using the explicit description of the mixing measure, many results
on linearly edge-reinforced random walks were proved, among
others, recurrence and asymptotic properties of the process
» for Z x G with a finite graph G and arbitrary constant initial
weights [Merkl & R., 2005-2009],
» for a diluted version of Z? with small initial weights
[Merkl & R., 2009].

In [Merkl & R., 2008], we proved polynomial decay of the edge
weights for 72. However, to deduce recurrence, we needed fast
enough decay which we could only prove for small initial weights
and a dilution of Z2.

Methods:
> transfer operator
» symmetry for finite pieces with periodic boundary conditions



A connection with the supersymmetric sigma model

Theorem (Sabot-Tarres 2011)

The law of linearly edge-reinforced random walk X is a mixture of
the law of the discrete-time process Y associated to VRJP if one
takes Wj; independent Gamma(aj; )-distributed.

Let I',; denote the gamma distribution with parameter a;. Then,
for any event A C Vo, one has

errw _ W ,vrjp (v, ..
PR(X € A) = / _Py Py e A) I Tay(dWy)
(0,00) W, eE

-/, / e () () T] oyl

W;eE



Consequences for ERRW

This connection allowed to transfer results from the susy model to
ERRW. Consider ERRW on Z? with constant initial weights.

> [Sabot-Tarres 2011]
recurrence for d > 2 for small initial weights

» [Disertori-Sabot-Tarres 2014]
transience for d > 3 and large initial weights

[Angel-Crawford-Kozma 2012]
gave an alternative proof for the recurrence part without using the
connection to the non-linear supersymmetric sigma model.



Recurrence of ERRW on Z2

Theorem (Sabot-Zeng 2015)

On 7?2, linearly edge-reinforced random walk is recurrent for all
constant initial weights.

Ideas of the proof of [Sabot-Zeng, 2015]:

» Consider boxes V,, = [—n, n]?> with wired boundary conditions.
One can couple the corresponding susy models. This yields
coupled variables u("), i€V,

i
(n) . .
» e n €N, is a martingale.

Extension by [Disertori, Merkl & R., 2015] to a hierarchy of

martingales.

N}

» Using polynomial decay of the edge weights describing the
mixing measure for ERRW from [Merkl & R., 2008], they
deduce recurrence for Z2.

» The VRJP is transient iff lim,_ o e"



Summary

The supersymmetric sigma model, originally designed as a toy
model for disordered media, unexpectedly provides a powerful tool
to study

> vertex-reinforced jump processes and

> linearly edge-reinforced random walk.



