Processes with reinforcement

Silke Rolles (Technical University of Munich)

Joint work with Margherita Disertori, Franz Merkl, and Pierre Tarrès

Bonn, October 8, 2016

Vertex-reinforced jump process (VRJP)

- Let G = (V, E) be a locally finite, undirected graph without direct loops. The undirected edge i ∼ j is given the weight W_{ij} > 0.
- ► The vertex-reinforced jump process Y = (Y_u)_{u≥0} is a process in continuous time where given (Y_s)_{s≤u} the particle jumps from site i to site j ~ i with rate

 $W_{ij}(1+L_j(u)),$

where

$$L_j(u) = \int_0^u \mathbb{1}_{\{Y_s=j\}} ds$$

is the local time at *j*.

Vertex-reinforced jump process (VRJP)

- Let G = (V, E) be a locally finite, undirected graph without direct loops. The undirected edge i ∼ j is given the weight W_{ij} > 0.
- ► The vertex-reinforced jump process Y = (Y_u)_{u≥0} is a process in continuous time where given (Y_s)_{s≤u} the particle jumps from site i to site j ~ i with rate

 $W_{ij}(1+L_j(u)),$

where

$$L_j(u) = \int_0^u \mathbb{1}_{\{Y_s=j\}} ds$$

is the local time at j.

- Conceived by Wendelin Werner.
- ► [Davis-Volkov 2002,2004]: finite graphs and trees.
- ► [Collevecchio 2009], [Basdevant-Singh 2010]: more on trees

An important discovery

Let

$$ilde{Y} = (ilde{Y}_n)_{n \in \mathbb{N}_0}$$

be the discrete-time process associated with the VRJP Y by taking only the value of Y_u immediately before the jump times.

Theorem (Sabot-Tarrès 2011) On any finite graph, $(\tilde{Y}_n)_{n \in \mathbb{N}_0}$ is a mixture of reversible Markov chains.

Mixture of reversible Markov chains

On any finite graph, the discrete-time process \tilde{Y} associated with the VRJP is a mixture of reversible Markov chains. This means:

- Set $\mathcal{X} = (0, \infty)^E$.
- X ∋ x = (x_{ij})_{(i∼j)∈E} are weights on the undirected edges of the graph G.

Mixture of reversible Markov chains

On any finite graph, the discrete-time process \tilde{Y} associated with the VRJP is a mixture of reversible Markov chains. This means:

- Set $\mathcal{X} = (0, \infty)^E$.
- X ∋ x = (x_{ij})_{(i∼j)∈E} are weights on the undirected edges of the graph G.
- For i₀ ∈ V and x ∈ (0,∞)^E, let Q^{mc}_{i₀,x} be the distribution of the discrete-time Markovian random walk, starting at i₀, with transition matrix

$$\Pi_x(i,j) = \frac{x_{ij}}{\sum_{k \in V: i \sim k} x_{ik}} \mathbb{1}_{\{(i \sim j) \in E\}}.$$

Mixture of reversible Markov chains

On any finite graph, the discrete-time process \tilde{Y} associated with the VRJP is a mixture of reversible Markov chains. This means:

- Set $\mathcal{X} = (0, \infty)^E$.
- X ∋ x = (x_{ij})_{(i∼j)∈E} are weights on the undirected edges of the graph G.
- For i₀ ∈ V and x ∈ (0,∞)^E, let Q^{mc}_{i0,x} be the distribution of the discrete-time Markovian random walk, starting at i₀, with transition matrix

$$\Pi_{x}(i,j) = \frac{x_{ij}}{\sum_{k \in V: i \sim k} x_{ik}} \mathbb{1}_{\{(i \sim j) \in E\}}.$$

There is a unique probability measure $\mathbb{P}_{i_0}^{\mathcal{W}}$ on \mathcal{X} , depending on the starting point i_0 and the weights $W = (W_{ij})_{(i \sim j) \in E} \in \mathcal{X}$ of the VRJP such that for any event $A \subseteq V^{\mathbb{N}_0}$, one has

$$\mathcal{P}^{W,\mathrm{vrjp}}_{i_0}(\tilde{Y}\in A) = \int_{\mathcal{X}} Q^{\mathrm{mc}}_{i_0,x}(A) \, \mathbb{P}^W_{i_0}(dx).$$

Description of the mixing measure

Theorem (Sabot-Tarrès 2011) The mixing measure $\mathbb{P}_{i_0}^{W}$ can be described by putting on the edge $i \sim j$ the weight

 $W_{ii}e^{u_i+u_j}$

with $(u_i)_{i \in V}$ distributed according to (a marginal of) Zirnbauer's supersymmetric (susy) hyperbolic non-linear sigma model.

- introduced by Zirnbauer in 1991.
- Zirnbauer writes that it may serve as a toy model for studying diffusion and localization in disordered one-electron systems.
- Original form involves Grassmann variables.
- Present version: Grassmann variables replaced by spanning trees.

The supersymmetric hyperbolic non-linear sigma model

Let
$$\Omega_{i_0} = \{(u, s) \in \mathbb{R}^V \times \mathbb{R}^V : u_{i_0} = s_{i_0} = 0\},\$$

 $\mathcal{T} = \text{set of spanning trees of } \mathcal{G}.$

 $\mu_{i_0}^W$ is the following probability measure on $\Omega_{i_0} \times \mathcal{T}$:

$$d\mu_{i_0}^{W}(u, s, T)$$

$$= \prod_{(i\sim j)\in E} \exp\left\{-W_{ij}\left[\cosh(u_i - u_j) - 1 + \frac{1}{2}(s_i - s_j)^2 e^{u_i + u_j}\right]\right\}$$

$$\prod_{(i\sim j)\in T} W_{ij} e^{u_i + u_j} \prod_{j\in V\setminus\{i_0\}} \frac{e^{-u_j} du_j ds_j}{2\pi} dT,$$

where du_j and ds_j denote the Lebesgue measure on \mathbb{R} and dT is the counting measure on \mathcal{T} .

Interpretation of the supersymmetric sigma model

 $(c(u)W_{ij}e^{u_i+u_j})_{(i\sim j)\in E}$

with $c(u) = 1/(\sum_{(i \sim j) \in E} W_{ij}e^{u_i+u_j})$ can be interpreted as the asymptotic fraction of time the discrete time process associated to the vertex-reinforced jump process spends traversing the edges of the graph \mathcal{G} .

Interpretation of the supersymmetric sigma model

 $(c(u)W_{ij}e^{u_i+u_j})_{(i\sim j)\in E}$

with $c(u) = 1/(\sum_{(i \sim j) \in E} W_{ij}e^{u_i + u_j})$ can be interpreted as the asymptotic fraction of time the discrete time process associated to the vertex-reinforced jump process spends traversing the edges of the graph \mathcal{G} .

In a work in progress with Franz Merkl and Pierre Tarrès, we give an interpretation of the other variables s and T in terms of the asymptotic behavior of a time-changed version of the vertex-reinforced jump process.

- ► *T* corresponds to the last exit tree,
- s corresponds to fluctuations of the local times spent at the vertices around their limit.

Even more, we provide an extension of the susy model having $\mu_{i_0}^W$ as a marginal.

Key results on the supersymmetric sigma model

The following results were shown for the susy model on \mathbb{Z}^d with constant $W_{ij} \equiv W$:

Exponential localization

- ▶ for d = 1 and all W [Zirnbauer 1991] and [Disertori-Spencer 2010]
- ▶ for d ≥ 2 and small W [Disertori-Spencer 2010]

Quasi-diffusive phase

▶ for d ≥ 3 and large W [Disertori-Spencer-Zirnbauer 2010] Consider the graph \mathbb{Z}^d with constant weights W.

The previous connections were used to prove a phase transition for the vertex-reinforced jump process for $d \ge 3$:

- ► [Sabot-Tarrès 2011] recurrence for d ≥ 2 for small weights W
- ► [Disertori-Sabot-Tarrès 2014] transience for d ≥ 3 and large weights W

The supersymmetric sigma model on a strip

- ► Consider *G* = Z × *G* with a finite connected undirected graph *G*.
- For $L = (\underline{L}, \overline{L}) \in \mathbb{N}^2$ consider large finite pieces

▶ Endow *G* with translation-invariant edge weights *W*_{ij}.

The supersymmetric sigma model on a strip

- ► Consider *G* = Z × *G* with a finite connected undirected graph *G*.
- For $L = (\underline{L}, \overline{L}) \in \mathbb{N}^2$ consider large finite pieces

- ▶ Endow *G* with translation-invariant edge weights *W*_{ij}.
- Fix one point $\mathbf{0} = (0, p)$ at level 0.
- Extend \mathcal{G} and \mathcal{G}_L by adding a vertex ρ which is only connected to **0**. Denote the new graphs by \mathcal{G}^{ρ} and \mathcal{G}_L^{ρ} .
- Let $\mu_{0,L}^W$ denote the susy measure corresponding to \mathcal{G}_L^ρ .

Exponential localization

For $l \in \mathbb{Z}$, let $\ell := (l, p)$ denote the copy of $\mathbf{0} = (0, p)$ at level l.

Theorem (Disertori, Merkl & R. 2014) For all $L = (-\underline{L}, \overline{L})$ and I with $-\underline{L} \le I \le \overline{L}$, one has $E_{\mu_{0,L}^{W}} \left[e^{\frac{u_{\ell}-u_{0}}{2}} \right] \le c_{1}e^{-c_{2}|I|}$

with constants $c_1(G, W), c_2(G, W) > 0$.

Existence of an infinite volume limit

Theorem (Disertori, Merkl & R. 2014) There exists a probability measure

 $\mu^W_{\mathbf{0},\infty}$ on $\mathbb{R}^V imes \mathbb{R}^V$

such that for any bounded random variable \mathcal{O} depending only on finitely many u_i, s_i we have

 $E_{\mu_{0,L}^W}[\mathcal{O}] \to E_{\mu_{0,\infty}^W}[\mathcal{O}] \quad \text{ as } L = (-\underline{L}, \overline{L}) \to (-\infty, +\infty).$

Corollary 1 for VRJP on the infinite graph $\mathcal{G}^{ ho}$

Using the result from Sabot and Tarrès, our exponential decay for the sigma model has the following consequences for the vertex-reinforced jump process (VRJP):

Corollary (Disertori, Merkl & R. 2014)

The discrete time process associated to the VRJP on \mathcal{G}^{ρ} is a mixture of positive recurrent irreducible reversible Markov chains.

The **mixing measure** for the random weights is given by the joint distribution of

 $(W_{ij}e^{u_i+u_j})_{(i\sim j)\in\mathcal{G}^{\rho}}$

with respect to $\mu_{\mathbf{0},\infty}^{W}$.

Corollary 2 for VRJP on the infinite graph $\mathcal{G}^{
ho}$

Corollary (Disertori, Merkl & R. 2014) For the discrete-time process $(\tilde{Y}_n)_{n \in \mathbb{N}_0}$ associated to the VRJP on \mathcal{G}^{ρ} , one has

 $\sup_{n\in\mathbb{N}_0} P^{W,\mathrm{vrjp}}_{\rho}(\tilde{Y}_n=i) \leq c_3 e^{-c_4|i|} \quad \text{for all } i\in V,$

 $\max_{k=0,...,n} |\tilde{Y}_k| \le c_5 \log n \quad \textit{for all large } n \quad P_\rho^{W, \text{vrjp}}\text{-}\textit{a.s.}$

with constants $c_3(G, W), c_4(G, W), c_5(G, W) > 0$.

Ideas from the proof

Key estimate:
$$E_{\mu_{0,L}^W}\left[e^{rac{t_\ell-t_0}{2}}
ight] \leq c_1 e^{-c_2 l}$$
, where

$$d\mu_{0,L}^{W}(u, s, T) = \prod_{(i \sim j) \in E} \exp\left\{-W_{ij}\left[\cosh(u_i - u_j) - 1 + \frac{1}{2}(s_i - s_j)^2 e^{u_i + u_j}\right]\right\}$$
$$\prod_{(i \sim i) \in T} W_{ij} e^{u_i + u_j} \cdot W_{0\rho} e^{u_0} e^{-M(u_0, s_0)} \prod_{j \in V} \frac{e^{-u_j} du_j ds_j}{2\pi} dT$$

Strategy of the proof:

- Use a transfer operator approach.
- We need a local description of the spanning trees for every "slice" of the graph.
- ► The proof has some similarities with the first recurrence proof for linearly edge-reinforced random walk on Z × {1,2} [Merkl & R. 2005].

Linearly edge-reinforced random walk (ERRW)

Fix weights $a_{ij} > 0$, $(i \sim j) \in E$. Linearly edge-reinforced random walk is a discrete-time process $(X_n)_{n \in \mathbb{N}_0}$ on \mathcal{G} starting in i_0 .

The reinforcement is encoded in time-dependent weights $w_{ij}(n)$, $n \in \mathbb{N}_0$, on the undirected edges $(i \sim j) \in E$.

- Initial weights: w_{ij}(0) = a_{ij}
- Each time an edge is crossed, its weight is increased by 1:

 $w_{ij}(n+1) = w_{ij}(n) + 1_{\{(X_n \sim X_{n+1}) = (i \sim j)\}}.$

Linearly edge-reinforced random walk (ERRW)

Fix weights $a_{ij} > 0$, $(i \sim j) \in E$. Linearly edge-reinforced random walk is a discrete-time process $(X_n)_{n \in \mathbb{N}_0}$ on \mathcal{G} starting in i_0 .

The reinforcement is encoded in time-dependent weights $w_{ij}(n)$, $n \in \mathbb{N}_0$, on the undirected edges $(i \sim j) \in E$.

- Initial weights: w_{ij}(0) = a_{ij}
- Each time an edge is crossed, its weight is increased by 1:

$$w_{ij}(n+1) = w_{ij}(n) + 1_{\{(X_n \sim X_{n+1}) = (i \sim j)\}}$$

The process jumps with probability proportional to the edge weights: For $j \in V$, $n \in \mathbb{N}_0$,

$$P_{i_0}^{a,\text{errw}}(X_{n+1}=j|X_0,\ldots,X_n)=\frac{w_{X_nj}(n)}{\sum_{(X_n\sim k)\in E}w_{X_nk}(n)}1_{\{(X_n\sim j)\in E\}}.$$

ERRW as a mixture of Markov chains

- ► ERRW was introduced by Diaconis in 1986.
- Pemantle in his thesis writes that Diaconis asked him about recurrence and transience of the process on Z^d, d ≥ 1.
 [Pemantle, 1988] showed a phase transition between recurrence and transience on a binary tree.

It has been known for a long time that ERRW on any finite graph is a mixture of reversible Markov chains. The mixing measure can be described as a joint probability law on the set $(0, \infty)^E$ of edge weights of the graph.

- ERRW is partially exchangeable. Hence one can apply de Finetti theorems: [Diaconis-Freedman, 1980], [R., 2003]
- "The magic formula": [Coppersmith-Diaconis, 1986], [Keane-R., 2000], [Merkl-Öry-R., 2008], [Sabot-Tarrès-Zeng, 2016], ...

Results on ERRW

Using the explicit description of the mixing measure, many results on linearly edge-reinforced random walks were proved, among others, recurrence and asymptotic properties of the process

- For Z × G with a finite graph G and arbitrary constant initial weights [Merkl & R., 2005-2009],
- ▶ for a diluted version of Z² with small initial weights [Merkl & R., 2009].

In [Merkl & R., 2008], we proved polynomial decay of the edge weights for \mathbb{Z}^2 . However, to deduce recurrence, we needed fast enough decay which we could only prove for small initial weights and a dilution of \mathbb{Z}^2 .

Methods:

- transfer operator
- symmetry for finite pieces with periodic boundary conditions

A connection with the supersymmetric sigma model

Theorem (Sabot-Tarrès 2011)

The law of linearly edge-reinforced random walk X is a mixture of the law of the discrete-time process \tilde{Y} associated to VRJP if one takes W_{ij} independent Gamma(a_{ij})-distributed.

Let $\Gamma_{a_{ij}}$ denote the gamma distribution with parameter a_{ij} . Then, for any event $A \subseteq V^{\mathbb{N}_0}$, one has

$$\begin{split} P_{i_0}^{\mathbf{a},\mathrm{errw}}(X\in A) &= \int_{(0,\infty)^E} P_{i_0}^{W,\mathrm{vrjp}}(\tilde{Y}\in A) \prod_{W_{ij}\in E} \Gamma_{a_{ij}}(dW_{ij}) \\ &= \int_{(0,\infty)^E} \int_{\Omega_{i_0}} Q_{i_0,W_{ij}e^{u_i+u_j}}^{\mathrm{mc}}(A) \, \mu_{i_0}^W(du) \prod_{W_{ij}\in E} \Gamma_{a_{ij}}(dW_{ij}). \end{split}$$

Consequences for ERRW

This connection allowed to transfer results from the susy model to ERRW. Consider ERRW on \mathbb{Z}^d with constant initial weights.

- ► [Sabot-Tarrès 2011] recurrence for d ≥ 2 for small initial weights
- ► [Disertori-Sabot-Tarrès 2014] transience for d ≥ 3 and large initial weights

[Angel-Crawford-Kozma 2012]

gave an alternative proof for the recurrence part without using the connection to the non-linear supersymmetric sigma model.

Recurrence of ERRW on \mathbb{Z}^2

Theorem (Sabot-Zeng 2015)

On \mathbb{Z}^2 , linearly edge-reinforced random walk is recurrent for all constant initial weights.

Ideas of the proof of [Sabot-Zeng, 2015]:

- Consider boxes V_n = [−n, n]² with wired boundary conditions. One can couple the corresponding susy models. This yields coupled variables u_i⁽ⁿ⁾, i ∈ V_n.
- e^{u_i⁽ⁿ⁾}, n ∈ N, is a martingale.
 Extension by [Disertori, Merkl & R., 2015] to a hierarchy of martingales.
- The VRJP is transient iff $\lim_{n\to\infty} e^{u_i^{(n)}} > 0$.
- ► Using polynomial decay of the edge weights describing the mixing measure for ERRW from [Merkl & R., 2008], they deduce recurrence for Z².

Summary

The supersymmetric sigma model, originally designed as a toy model for disordered media, unexpectedly provides a powerful tool to study

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- vertex-reinforced jump processes and
- Inearly edge-reinforced random walk.