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Vertex-reinforced jump process (VRJP)

I Let G = (V ,E ) be a locally finite, undirected graph without
direct loops. The undirected edge i ∼ j is given the weight
Wij > 0.

I The vertex-reinforced jump process Y = (Yu)u≥0 is a process
in continuous time where given (Ys)s≤u the particle jumps
from site i to site j ∼ i with rate

Wij(1 + Lj(u)),

where

Lj(u) =

∫ u

0
1{Ys=j} ds

is the local time at j .

I Conceived by Wendelin Werner.

I [Davis-Volkov 2002,2004]: finite graphs and trees.

I [Collevecchio 2009], [Basdevant-Singh 2010]: more on trees
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An important discovery

Let
Ỹ = (Ỹn)n∈N0

be the discrete-time process associated with the VRJP Y by
taking only the value of Yu immediately before the jump times.

Theorem (Sabot-Tarrès 2011)

On any finite graph, (Ỹn)n∈N0 is a mixture of reversible Markov
chains.



Mixture of reversible Markov chains
On any finite graph, the discrete-time process Ỹ associated with
the VRJP is a mixture of reversible Markov chains. This means:

I Set X = (0,∞)E .
I X 3 x = (xij)(i∼j)∈E are weights on the undirected edges of

the graph G .

I For i0 ∈ V and x ∈ (0,∞)E , let Qmc
i0,x

be the distribution of
the discrete-time Markovian random walk, starting at i0, with
transition matrix

Πx(i , j) =
xij∑

k∈V :i∼k xik
1{(i∼j)∈E}.

There is a unique probability measure PW
i0

on X , depending on the
starting point i0 and the weights W = (Wij)(i∼j)∈E ∈ X of the

VRJP such that for any event A ⊆ V N0 , one has

PW ,vrjp
i0

(Ỹ ∈ A) =

∫
X

Qmc
i0,x(A)PW

i0 (dx).
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the VRJP is a mixture of reversible Markov chains. This means:

I Set X = (0,∞)E .
I X 3 x = (xij)(i∼j)∈E are weights on the undirected edges of

the graph G .
I For i0 ∈ V and x ∈ (0,∞)E , let Qmc

i0,x
be the distribution of

the discrete-time Markovian random walk, starting at i0, with
transition matrix

Πx(i , j) =
xij∑

k∈V :i∼k xik
1{(i∼j)∈E}.

There is a unique probability measure PW
i0

on X , depending on the
starting point i0 and the weights W = (Wij)(i∼j)∈E ∈ X of the

VRJP such that for any event A ⊆ V N0 , one has

PW ,vrjp
i0
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Description of the mixing measure

Theorem (Sabot-Tarrès 2011)

The mixing measure PW
i0

can be described by putting on the edge
i ∼ j the weight

Wije
ui+uj

with (ui )i∈V distributed according to (a marginal of) Zirnbauer’s
supersymmetric (susy) hyperbolic non-linear sigma model.

I introduced by Zirnbauer in 1991.

I Zirnbauer writes that it may serve as a toy model for studying
diffusion and localization in disordered one-electron systems.

I Original form involves Grassmann variables.

I Present version: Grassmann variables replaced by spanning
trees.



The supersymmetric hyperbolic non-linear sigma model

Let Ωi0 ={(u, s) ∈ RV × RV : ui0 = si0 = 0},
T = set of spanning trees of G.

µWi0 is the following probability measure on Ωi0 × T :

dµWi0 (u, s,T )

=
∏

(i∼j)∈E

exp

{
−Wij

[
cosh(ui − uj)− 1 +

1

2
(si − sj)

2eui+uj

]}
∏

(i∼j)∈T

Wije
ui+uj

∏
j∈V \{i0}

e−uj dujdsj
2π

dT ,

where duj and dsj denote the Lebesgue measure on R and dT is
the counting measure on T .



Interpretation of the supersymmetric sigma model

(c(u)Wije
ui+uj )(i∼j)∈E

with c(u) = 1/(
∑

(i∼j)∈E Wije
ui+uj ) can be interpreted as the

asymptotic fraction of time the discrete time process associated to
the vertex-reinforced jump process spends traversing the edges of
the graph G.

In a work in progress with Franz Merkl and Pierre Tarrès, we give
an interpretation of the other variables s and T in terms of the
asymptotic behavior of a time-changed version of the
vertex-reinforced jump process.

I T corresponds to the last exit tree,

I s corresponds to fluctuations of the local times spent at the
vertices around their limit.

Even more, we provide an extension of the susy model having µWi0
as a marginal.
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Key results on the supersymmetric sigma model

The following results were shown for the susy model on Zd with
constant Wij ≡W :

Exponential localization

I for d = 1 and all W
[Zirnbauer 1991] and [Disertori-Spencer 2010]

I for d ≥ 2 and small W
[Disertori-Spencer 2010]

Quasi-diffusive phase

I for d ≥ 3 and large W
[Disertori-Spencer-Zirnbauer 2010]



Recurrence and transience on Zd

Consider the graph Zd with constant weights W .

The previous connections were used to prove a phase transition for
the vertex-reinforced jump process for d ≥ 3:

I [Sabot-Tarrès 2011]
recurrence for d ≥ 2 for small weights W

I [Disertori-Sabot-Tarrès 2014]
transience for d ≥ 3 and large weights W



The supersymmetric sigma model on a strip

I Consider G = Z× G with a finite connected undirected
graph G .

I For L = (L, L) ∈ N2 consider large finite pieces

GL = {−L, L} × G
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I Endow G with translation-invariant edge weights Wij .

I Fix one point 0 = (0, p) at level 0.

I Extend G and GL by adding a vertex ρ which is only connected
to 0. Denote the new graphs by Gρ and GρL.

I Let µW0,L denote the susy measure corresponding to GρL.
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Exponential localization

For l ∈ Z, let ` := (l , p) denote the copy of 0 = (0, p) at level l .

Theorem (Disertori, Merkl & R. 2014)

For all L = (−L, L) and l with −L ≤ l ≤ L, one has

EµW0,L

[
e

u`−u0
2

]
≤ c1e−c2|l |

with constants c1(G ,W ), c2(G ,W ) > 0.



Existence of an infinite volume limit

Theorem (Disertori, Merkl & R. 2014)

There exists a probability measure

µW0,∞ on RV × RV

such that for any bounded random variable O depending only on
finitely many ui , si we have

EµW0,L
[O]→ EµW0,∞

[O] as L = (−L, L)→ (−∞,+∞).



Corollary 1 for VRJP on the infinite graph Gρ

Using the result from Sabot and Tarrès, our exponential decay for
the sigma model has the following consequences for the
vertex-reinforced jump process (VRJP):

Corollary (Disertori, Merkl & R. 2014)

The discrete time process associated to the VRJP on Gρ is a
mixture of positive recurrent irreducible reversible Markov chains.

The mixing measure for the random weights is given by the joint
distribution of

(Wije
ui+uj )(i∼j)∈Gρ

with respect to µW0,∞.



Corollary 2 for VRJP on the infinite graph Gρ

Corollary (Disertori, Merkl & R. 2014)

For the discrete-time process (Ỹn)n∈N0 associated to the VRJP on
Gρ, one has

sup
n∈N0

PW ,vrjp
ρ (Ỹn = i) ≤ c3e−c4|i | for all i ∈ V ,

max
k=0,...,n

|Ỹk | ≤ c5 log n for all large n PW ,vrjp
ρ -a.s.

with constants c3(G ,W ), c4(G ,W ), c5(G ,W ) > 0.



Ideas from the proof

Key estimate: EµW0,L

[
e

t`−t0
2

]
≤ c1e−c2l , where

dµW0,L(u, s,T )

=
∏

(i∼j)∈E

exp

{
−Wij

[
cosh(ui − uj)− 1 +

1

2
(si − sj)

2eui+uj

]}
∏

(i∼j)∈T

Wije
ui+uj ·W0ρeu0e−M(u0,s0)

∏
j∈V

e−uj dujdsj
2π

dT

Strategy of the proof:

I Use a transfer operator approach.

I We need a local description of the spanning trees for every
“slice” of the graph.

I The proof has some similarities with the first recurrence proof
for linearly edge-reinforced random walk on Z× {1, 2}
[Merkl & R. 2005].



Linearly edge-reinforced random walk (ERRW)

Fix weights aij > 0, (i ∼ j) ∈ E .
Linearly edge-reinforced random walk is a discrete-time process
(Xn)n∈N0 on G starting in i0.

The reinforcement is encoded in time-dependent weights wij(n),
n ∈ N0, on the undirected edges (i ∼ j) ∈ E .

I Initial weights: wij(0) = aij
I Each time an edge is crossed, its weight is increased by 1:

wij(n + 1) = wij(n) + 1{(Xn∼Xn+1)=(i∼j)}.

The process jumps with probability proportional to the edge
weights: For j ∈ V , n ∈ N0,

Pa,errw
i0

(Xn+1 = j |X0, . . . ,Xn) =
wXnj(n)∑

(Xn∼k)∈E wXnk(n)
1{(Xn∼j)∈E}.
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ERRW as a mixture of Markov chains

I ERRW was introduced by Diaconis in 1986.

I Pemantle in his thesis writes that Diaconis asked him about
recurrence and transience of the process on Zd , d ≥ 1.
[Pemantle, 1988] showed a phase transition between
recurrence and transience on a binary tree.

It has been known for a long time that ERRW on any finite graph
is a mixture of reversible Markov chains. The mixing measure can
be described as a joint probability law on the set (0,∞)E of edge
weights of the graph.

I ERRW is partially exchangeable. Hence one can apply de
Finetti theorems: [Diaconis-Freedman, 1980], [R., 2003]

I “The magic formula”: [Coppersmith-Diaconis, 1986],
[Keane-R., 2000], [Merkl-Öry-R., 2008], [Sabot-Tarrès-Zeng,
2016], ...



Results on ERRW

Using the explicit description of the mixing measure, many results
on linearly edge-reinforced random walks were proved, among
others, recurrence and asymptotic properties of the process

I for Z× G with a finite graph G and arbitrary constant initial
weights [Merkl & R., 2005-2009],

I for a diluted version of Z2 with small initial weights
[Merkl & R., 2009].

In [Merkl & R., 2008], we proved polynomial decay of the edge
weights for Z2. However, to deduce recurrence, we needed fast
enough decay which we could only prove for small initial weights
and a dilution of Z2.

Methods:

I transfer operator

I symmetry for finite pieces with periodic boundary conditions



A connection with the supersymmetric sigma model

Theorem (Sabot-Tarrès 2011)

The law of linearly edge-reinforced random walk X is a mixture of
the law of the discrete-time process Ỹ associated to VRJP if one
takes Wij independent Gamma(aij)-distributed.

Let Γaij denote the gamma distribution with parameter aij . Then,

for any event A ⊆ V N0 , one has

Pa,errw
i0

(X ∈ A) =

∫
(0,∞)E

PW ,vrjp
i0

(Ỹ ∈ A)
∏

Wij∈E
Γaij (dWij)

=

∫
(0,∞)E

∫
Ωi0

Qmc
i0,Wije

ui+uj (A)µWi0 (du)
∏

Wij∈E
Γaij (dWij).



Consequences for ERRW

This connection allowed to transfer results from the susy model to
ERRW. Consider ERRW on Zd with constant initial weights.

I [Sabot-Tarrès 2011]
recurrence for d ≥ 2 for small initial weights

I [Disertori-Sabot-Tarrès 2014]
transience for d ≥ 3 and large initial weights

[Angel-Crawford-Kozma 2012]
gave an alternative proof for the recurrence part without using the
connection to the non-linear supersymmetric sigma model.



Recurrence of ERRW on Z2

Theorem (Sabot-Zeng 2015)

On Z2, linearly edge-reinforced random walk is recurrent for all
constant initial weights.

Ideas of the proof of [Sabot-Zeng, 2015]:

I Consider boxes Vn = [−n, n]2 with wired boundary conditions.
One can couple the corresponding susy models. This yields

coupled variables u
(n)
i , i ∈ Vn.

I eu
(n)
i , n ∈ N, is a martingale.

Extension by [Disertori, Merkl & R., 2015] to a hierarchy of
martingales.

I The VRJP is transient iff limn→∞ eu
(n)
i > 0.

I Using polynomial decay of the edge weights describing the
mixing measure for ERRW from [Merkl & R., 2008], they
deduce recurrence for Z2.



Summary

The supersymmetric sigma model, originally designed as a toy
model for disordered media, unexpectedly provides a powerful tool
to study

I vertex-reinforced jump processes and

I linearly edge-reinforced random walk.


