Recovery of a recessive allele in a Mendelian diploid model

Loren Coquille

joint work with A. Bovier and R. Neukirch (University of Bonn)

Young Women in Probability and Analysis 2016, Bonn

- 2 Clonal reproduction model
- 3 Mendelian diploid model

Clonal Reproduction versus Sexual Reproduction

VS.

- individual reproduces out of itself
- offspring = copy of the parent
- offspring genom:
 - 100% of genes of the parent

Sexual Reproduction

- individual needs a partner for reproduction
- offspring genom:
 - 50% genes of mother
 - ► 50% genes of father

1 Introduction

- 2 Clonal reproduction model
- 3 Mendelian diploid model

Bolker, Pacala, Dieckmann, Law, Champagnat, Méléard,...

 $\Theta \simeq \mathbb{N}$: Trait space $n_i(t)$: Number of individuals of trait $i \in \Theta$

Dynamics of the process

$$n(t) = (n_0(t), n_1(t), \ldots) \in \mathbb{N}^{\mathbb{N}}$$
 :

Each individual of trait i

- reproduces clonally with rate $b_i(1-\mu)$
- reproduces with mutation with rate $b_{i\mu}$ according to kernel M(i, j)
- dies due to age or competition with rate $d_i + \sum_j c_{ij} n_j$

Bolker, Pacala, Dieckmann, Law, Champagnat, Méléard,...

 $\Theta \simeq \mathbb{N}$: Trait space $n_i(t)$: Number of individuals of trait $i \in \Theta$

Dynamics of the process

$$n(t) = (n_0(t), n_1(t), \ldots) \in \mathbb{N}^{\mathbb{N}}$$
 :

The population n_i

- increases by 1 with rate $b_i(1-\mu)n_i$
- makes n_j increase by 1 with rate $b_i \mu \cdot M(i,j) \cdot n_i$
- deceases by 1 with rate $(d_i + \sum_j c_{ij}n_j)n_i$

Bolker, Pacala, Dieckmann, Law, Champagnat, Méléard,...

 $\Theta\simeq\mathbb{N}$: Trait space $n_i(t)$: Number of individuals of trait $i\in\Theta$

Dynamics of the rescaled process (with competition c_{ij}/K)

$$n^{K}(t) = \frac{1}{K} (n_0(t), n_1(t), \ldots) \in (\mathbb{N}/K)^{\mathbb{N}} \quad :$$

The population n_i^K

- increases by 1/K with rate $b_i(1-\mu) \cdot Kn_i^K$
- makes n_j^K increase by 1/K with rate $b_i \mu M(i,j) \cdot K n_i^K$
- deceases by 1/K with rate $(d_i + \sum_j c_{ij} n_j^K) \cdot K n_i^K$

Proposition

Let $\Theta = \{1, 2\}$, assume that the initial condition $(n_1^K(0), n_2^K(0))$ converges to a deterministic vector (x_0, y_0) for $K \to \infty$. Then the process $(n_1^K(t), n_2^K(t))$ converges in law, on bounded time intervals, to the solution of

$$\frac{d}{dt} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = X(x(t), y(t)) = \begin{pmatrix} (b_1 - d_1 - c_{11}x - c_{12}y)x \\ (b_2 - d_2 - c_{21}x - c_{22}y)y \end{pmatrix}$$

with initial condition $(x(0), y(0)) = (x_0, y_0)$.

Monomorphic equilibria : $\bar{n}_i = \frac{b_i - d_i}{c_{ii}}$ Invasion fitness : $f_{ij} = b_i - d_i - c_{ij}\bar{n}_j$.

Large population and ONE mutation

Champagnat, 2006

8/27

Proposition (Trait Substitution Sequence)

Assume

- $\log K \ll \frac{1}{K\mu}$
- $\forall (i,j) \in \Theta^2$, either $(f_{ji} < 0)$ or $(f_{ji} > 0$ and $f_{ij} < 0)$.

Then the rescaled process

$$(n_{t/K\mu}^K)_{t\geq 0} \Rightarrow (\bar{n}_{X_t} \mathbf{1}_{X_t})_{t\geq 0}$$

where the TSS X_t is a Markov chain on Θ with transition kernel

$$P(i,j) = b_i \frac{[f_{ji}]_+}{b_j} M(i,j).$$

Jumps towards higher fitness

1 Introduction

- 2 Clonal reproduction model
- 3 Mendelian diploid model

Let \mathcal{U} be the allelic trait space, a countable set. For example $\mathcal{U} = \{a, A\}$.

- An individual i is determined by two alleles out of \mathcal{U} :
 - genotype: $(u_1^i, u_2^i) \in \mathcal{U}^2$
 - phenotype: $\phi((u_1^i, u_2^i))$, with $\phi: \mathcal{U}^2 \to \mathbb{R}_+$
- Rescaled population:
 let N_t be the total number of individuals at time t,

$$n_{u_1,u_2}^K(t) = \frac{1}{K} \sum_{i=1}^{N_t} \mathbf{1}_{(u_1^i,u_2^i)}(t)$$

Reproduction rate of (u_1^i, u_2^i) with (u_1^j, u_2^j) :

 $\frac{f_{u_1^i u_2^i} f_{u_1^j u_2^j}}{\text{Number of potential partners of } (u_1^i, u_2^i) \times \text{ their mean fertility}}$

which means, for one individual (u_1^i, u_2^i) :

- $Exp(f_{u_1^iu_2^i})$ -Clock rings,
- choose a partner at random,
- reproduce (proba according to fertility of the partner)

Birth and Death Rate

For $\mathcal{U} = \{a, A\}$

• The populations increase by 1 with rate

$$b_{aa} = \frac{(f_{aa}n_{aa} + \frac{1}{2}f_{aA}n_{aA})^2}{f_{aa}n_{aa} + f_{aA}n_{aA} + f_{AA}n_{AA}}$$

$$b_{aA} = 2 \frac{(f_{aa}n_{aa} + \frac{1}{2}f_{aA}n_{aA})(f_{AA}n_{AA} + \frac{1}{2}f_{aA}n_{aA})}{f_{aa}n_{aa} + f_{aA}n_{aA} + f_{AA}n_{AA}}$$

$$b_{AA} = \frac{(f_{AA}n_{AA} + \frac{1}{2}f_{aA}n_{aA})^2}{f_{aa}n_{aa} + f_{aA}n_{aA} + f_{AA}n_{AA}}$$

Birth and Death Rate

For $\mathcal{U} = \{a, A\}$

• The populations increase by 1 with rate

$$b_{aa} = \frac{(f_{aa}n_{aa} + \frac{1}{2}f_{aA}n_{aA})^2}{f_{aa}n_{aa} + f_{aA}n_{aA} + f_{AA}n_{AA}}$$

$$b_{aA} = 2 \frac{(f_{aa}n_{aa} + \frac{1}{2}f_{aA}n_{aA})(f_{AA}n_{AA} + \frac{1}{2}f_{aA}n_{aA})}{f_{aa}n_{aa} + f_{aA}n_{aA} + f_{AA}n_{AA}}$$

$$b_{AA} = \frac{(f_{AA}n_{AA} + \frac{1}{2}f_{aA}n_{aA})^2}{f_{aa}n_{aa} + f_{aA}n_{aA} + f_{AA}n_{AA}}$$

• The populations decrease by 1 with rate

$$\begin{aligned} d_{aa} &= (D_{aa} + C_{aa,aa}n_{aa} + C_{aa,aA}n_{aA} + C_{aa,AA}n_{AA})n_{aa} \\ d_{aA} &= (D_{aA} + C_{aA,aa}n_{aa} + C_{aA,aA}n_{aA} + C_{aA,AA}n_{AA})n_{aA} \\ d_{AA} &= (D_{AA} + C_{AA,AA}n_{AA} + C_{AA,aA}n_{aA} + C_{AA,aa}n_{aa})n_{AA} \end{aligned}$$

Proposition

Assume that the initial condition $(n_{aa}^{K}(0), n_{aA}^{K}(0), n_{AA}^{K}(0))$ converges to a deterministic vector (x_0, y_0, z_0) for $K \to \infty$. Then the process $(n_{aa}^{K}(t), n_{aA}^{K}(t), n_{AA}^{K}(t))$ converges in law to the solution of

$$\frac{d}{dt} \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = X(x(t), y(t), z(t)) = \begin{pmatrix} b_{aa}(x, y, z) - d_{aa}(x, y, z) \\ b_{aA}(x, y, z) - d_{aA}(x, y, z) \\ b_{AA}(x, y, z) - d_{AA}(x, y, z) \end{pmatrix}.$$

•
$$b_{AA}(x, y, z) = \frac{(f_{AA}z + \frac{1}{2}f_{aA}y)^2}{f_{aa}x + f_{aA}y + f_{AA}z}$$

• $d_{AA}(x, y, z) = (D_{AA} + C_{AA,aa}x + C_{AA,aA}y + C_{AA,AA}z)z$

• and similar expressions for the other terms

ONE mutation : 3-System (aa, aA, AA)

Phenotypic viewpoint

- allele A dominant
- allele a recessive

The dominant allele A defines the phenotype $\Rightarrow \phi(aA) = \phi(AA)$

ONE mutation : 3-System (aa, aA, AA)

Phenotypic viewpoint

- allele A dominant
- allele a recessive

The dominant allele A defines the phenotype $\Rightarrow \phi(aA) = \phi(AA)$

• $c_{u_1u_2,v_1v_2} \equiv c$, $\forall u_1u_2, v_1v_2 \in \{aa, aA, AA\}$

•
$$f_{AA} = f_{aA} = f_{aa} \equiv f$$

•
$$D_{AA} = D_{aA} \equiv D$$
 but $D_{aa} = D + \Delta$

ONE mutation : 3-System (aa, aA, AA)

Phenotypic viewpoint

- allele A dominant
- allele a recessive

The dominant allele A defines the phenotype $\Rightarrow \phi(aA) = \phi(AA)$

• $c_{u_1u_2,v_1v_2} \equiv c$, $\forall u_1u_2, v_1v_2 \in \{aa, aA, AA\}$

•
$$f_{AA} = f_{aA} = f_{aa} \equiv f$$

•
$$D_{AA} = D_{aA} \equiv D$$
 but $D_{aa} = D + \Delta$

 \Rightarrow type aA is as fit as AA and both are fitter than type aa

Work of Bovier, Neukirch (2015)

Start with $n_i^K(t) = \bar{n}_{aa} \mathbf{1}_{i=aa} + \frac{1}{K} \mathbf{1}_{i=aA}$ then :

The system converges to $(0, 0, \bar{n}_{AA})$ as $t \to \infty$ but slowly !

Suppose a new dominant mutant allele B appears before aA dies out.

Suppose that phenotypes a and B cannot reproduce.

Can the *aa*-population recover and coexist with the mutant population ?

Mutation to allele
$$B \rightarrow U = \{a, A, B\}$$

Model with a second mutant

Mutation to allele $B \rightarrow U = \{a, A, B\}$

⇒ 6 possible genotypes: *aa*, *aA*, *AA*, *aB*, *AB*, *BB* ⇒ Dominance of alleles a < A < B

Model with a second mutant

Mutation to allele $B \rightarrow U = \{a, A, B\}$

⇒ 6 possible genotypes: *aa*, *aA*, *AA*, *aB*, *AB*, *BB* ⇒ Dominance of alleles a < A < B

Differences in Fitness:

• fertility:
$$f_a = f_A = f_B = f$$

• natural death: $D_a = D + \Delta > D_A = D > D_B = D - \Delta$

No recombination between a and B

Birth Rates

birth-rate of *aa*-individual:

$$b_{aa} = \frac{n_{aa} \left(n_{aa} + \frac{1}{2}n_{aA}\right)}{\text{Pool}(aa)} + \frac{\frac{1}{2}n_{aB} \left(\frac{1}{2}n_{aA} + \frac{1}{2}n_{aB}\right)}{\text{Pool}(aB)} + \frac{\frac{1}{2}n_{aA} \left(n_{aa} + \frac{1}{2}n_{aA} + \frac{1}{2}n_{aB}\right)}{\text{Pool}(aA)}$$

Pools of potential partners:

No competition between a and B

	aa	аA	AA	aB	AB	BB
аа	c	с	С	0	0	0
аA	c	c	c	c	c	c
AA	c	c	c	c	c	c
aВ	0	c	c	c	c	c
AB	0	c	c	c	c	c
BB	0	c	c	c	c	c

Theorem (Bovier, Neukirch, C. 2016/10/07 (yesterday!)) The deterministic system started with initial condition

$$n_i(0) = \bar{n}_{AA} \mathbf{1}_{i=AA} + \epsilon \mathbf{1}_{i=aA} + \epsilon^2 \mathbf{1}_{i=aa} + \epsilon^3 \mathbf{1}_{i=AB}$$

and under the following assumptions on the parameters

- **1** Δ sufficiently small,
- I sufficiently large,

converges polynomially fast to the fixed point $(\bar{n}_a, 0, 0, 0, 0, \bar{n}_B)$.

Simulation

aa aA AA aB AB BB

Large population : deterministic system

Large population : deterministic system

aa aA AA aB AB BB

Recap - Dimorphism in two mutations

• Phase 1 : Exponential growth of AB at rate Δ inside the 3-system (aa, aA, AA)

 \bullet Phase 2 : Effective new 3-system (AA,AB,BB) until $AA\approx aA$

• Phase 3 : Exponential growth of aa at rate $f - D - \Delta \gg \Delta$

• Phase 4 : Convergence to $(\bar{n}_a, 0, 0, 0, 0, \bar{n}_B)$

