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I. Stochastic NLS

We start with the dispersive nonlinear Schrödinger equation (NLS):

−i u̇ = −∆u ± |u|p−2u,

on the torus; u is a function of time and the space variable on the
torus: u = u(t, x); plus sign is called defocusing and minus
focusing. (As a memory device, both terms on the RHS are of the
same sign in defocusing; while of opposite sign in focusing.) We
specialize to the cubic NLS on the circle, i.e., p = 4, and u may be
identified with a periodic function:

u(·, x) = u(·, x + 2π).
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The NLS is a Hamiltonian equation with the Hamiltonian

H(u, ū) =
1

2

∫
(|∇u|2)± 1

4
|u|4,

and u and ū are conjugate variables. It has two conserved
quantities, namely the energy (Hamiltonian) and the mass, the L2

norm of the solution u.
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For our purposes, it is more convenient to consider a variant of the
above NLS:

−i u̇ = −∆u ± |u|2u + ‖u‖2r
2 u.

Since the L2 norm is a conserved quantity, this does not change
the nature of the problem.

Below we look at the focusing case. (The defocusing case is
simpler and the same results hold.)
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Further, we consider a stochastic version of it, namely the
following (damped) SNLS:

du + (νσ ∗ σ ∗+i)(−∆ + 1− λ|u|2 + ‖u‖2r
2 )u dt =

√
2νσ ∗ dW ,

where σ is a smoothing operator, which damps high Fourier
modes, ν, λ > 0 are parameters and W is a white in space and
time complex Wiener process. (The mass term 1 was added to
avoid the zero mode.)
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The above SNLS is chosen in order that e−H is an invariant
measure. More generally e−βH is an invariant measure after
replacing ν by νβ, with β the inverse temperature.

Note that unlike the dispersive case, H is not a conserved quantity
due to dissipation. So e−βH is not automatically invariant. One
needs to choose the “right” process for it to be invariant.

Below I shall describe a series of recent and ongoing collaborative
works among Carlen, Fröhlich, Lebowitz and myself.
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That µ = e−βH is well-defined is shown in a recent work of Carlen,
Fröhlich and Lebowitz (2015). Note that previously, it was shown
in a work of Lebowitz, Rosen and Speer that without the ‖u‖2r

2

term, the measure e−βH is well-defined in an L2-ball.

The addition of the term ‖u‖2r
2 avoids the need for boundary

conditions and is technically simpler, cf. Lebowitz, Mounaix and
Wang (2013) for the case with boundary condition. (Recall that
contrary to the dispersive NLS, for SNLS the L2 norm is generally
not conserved, which is why boundary conditions are needed.)

Remark. The invariant measure is independent of σ, which only
affects the dynamics.
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II. Fokker-Planck equation in the Fourier variables

In the Fourier variables, the Hamiltonian becomes a sum denoted
by Φ:

Φ(a)/2π := Φ(a, ā)/2π

=
∑
n∈Z

(n2 + 1)|an|2 − λ
∑

n1−n2+n3−n4=0

an1 ān2an3 ān4 + (
∑
n

|an|2)r ,

where an ∈ C, n2 stands for |n|2.
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We have the following equation for a:

ȧn = −i ∂Φ

∂ān
− An

∂Φ

∂ān
+
√

AnΓn, |n| ≤ N,

where the Γn are independent centered complex Gaussian white
noises with

〈Γn(t)Γ̄n(t ′)〉 = 2δ(t − t ′);

diag An is the operator σ ∗ σ = (−∆ + 1)−γ , γ > 0 in Fourier
space.

We will not directly deal with the PDE, but instead the associated
Fokker - Planck equation which describes the time evolution of the
probability density P̃(a, t) with initial distribution P̃(a, 0) for the
process given by the stochastic PDE.
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Conjugating by e±Φ and setting P = eΦP̃, the Fokker - Planck
equation has the form:

∂tP(a, t) + LP(a, t) = 0,

where

L = −
∑
n

An
∂2

∂ān∂an
+ 〈A∇Φ,∇Φ〉 −

∑
n

An
∂2

∂ān∂an
Φ +HΦ.
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Here
∇Φ is the vector {∂ānΦ, ∂anΦ},

and
HΦ = 2

∑
n

(∂anΦ∂ān − ∂ānΦ∂an)

is the Hamiltonian vector field.
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III. Return to equilibrium

There is the following result:
Theorem. Let P0µ be the initial distribution, then the distribution
at time t satisfies

‖Pt − 1‖L2(µ) ≤ e−tE‖P0 − 1‖L2(µ);

with

E ≥ 1−
( λ

1− 2
r

) r
r−1
( r − 1

r

) 1

(r)
1

r−1

∼ 1− λ,

for r � 1. So E > 0 for λ < 1.
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Remark. The conditions for E > 0 correspond to the Hamiltonian
Φ being convex. One makes Fourier truncation and estimates
uniform in dimension. The convexity condition can be improved by
using Holley-Strook and entropy.
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IV. Heat equation on the cotangent space

Assume that f and g are two (non-negative) real solutions to the
Fokker-Planck equation:

∂f

∂t
= Lf ;

∂g

∂t
= Lg .

We are mainly interested in the time evolution of inner products:

∂

∂t

∫
fgdµ.
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For this purpose, the problem simplifies – only the real part of the
generator L contributes leading to a usual heat equation with a
drift. This can be seen as follows.

∂

∂t

∫
fgdµ = (Lf , g) + (f ,Lg)

= ((L+ L∗)f , g) = 2((ReL)f , g).

Let L = ReL. L has a very natural representation on the cotangent
space, using the exterior differentials.
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More precisely, let d be the exterior differentiation, defined to be

d :=
∑
n

∂anda
∧
n .

For example, if f is a (scalar) function, then

df =
∂f

∂a1
da1 +

∂f

∂a2
da2 + ...+

∂f

∂an
dan,

which can be identified with the vector

(∂f /∂a1, ∂f /∂a2, ..., ∂f /∂an).
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A (scalar) function f is called a 0-form; while df a 1-form. There
are also higher order forms, e.g., a 2-form:

df ∧ dg = −dg ∧ df ,

which can be identified with an anti-symmetric matrix.

The adjoint d∗ is defined to be

d∗ =
∑
n

−∂anda
c
n.

d can be seen as raising the “degree” ; while d∗ lowering the
degree. (d can be seen as the differentiation operator; while d∗ the
divergence operator.)
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We form the quadratic operator d∗d . It is easy to check that

(d∗d)f = −∆f ,

when operating on a scalar function f . So indeed d∗d reduces to
the usual Laplacian.
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When Φ 6= 0, we define the conjugated dΦ to be:

dΦ := e−ΦdeΦ =
∑
n

(∂an + ∂anΦ)da∧n ;

and the adjoint of dΦ with respect to A to be:

d∗,AΦ =
∑
n

An(−∂an + ∂anΦ)da
c
n.

Then it is easy to check that the diffusion operator L mentioned
earlier can be written in the form:

L = d∗,AΦ dΦ,

which is a Laplacian on scalar functions, the 0-forms.

W.-M. Wang Exponential approach to equilibrium for a stochastic NLS



What I will say below holds in general, so for illustration purposes,
we set A = Id .
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One of the advantages of this representation is that the Laplacian
can be naturally (automatically) generalized to operating on e.g,
vector-valued functions, the 1-forms, which occur naturally, and
also other higher order forms:

∆Φ = d∗ΦdΦ + dΦd
∗
Φ.

Remark. The second term in the Laplacian is missing in L because
d∗Φf = 0.
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As we will see shortly, within this framework certain integration by
parts in deriving the essential inequalities appear “automatic”.

We will mostly need ∆Φ on 0 forms and 1-forms. Writing out
explicitly the terms:

−∆
(1)
Φ = −∆

(0)
Φ ⊗ I + 2Φ′′
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Since the ∆Φ form a twisted Hodge-complex, there is the

intertwining properties of −∆
(0)
Φ and −∆

(1)
Φ , namely

σ(−∆
(0)
Φ )\{0} ⊆ σ(−∆

(1)
Φ ).

This is because if f is an eigenfunction of −∆
(0)
Φ with eigenvalue

λ 6= 0, then df is an eigenfunction for −∆
(1)
Φ with the same

eigenvalue λ by using d2
φ = 0. (This is sometimes called

supersymmetry.)

Using this leads to L = ∆
(0)
Φ having a spectral gap, provided Φ is

convex, which is essentially the spectral (L2) version of
Bacry-Emery.
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Remark. The supersymmetry used in random Schrödinger-Poisson
statistics, see e.g., [W, inventiones 2001]; random walk in a
random potential, see e.g., [W, PTRF 2001]; nonlinear sigma
model/random walk, e.g., [Disertori-Spencer CMP 2010],
[Disertori-Merkl-Rolle, CMP 2014], [Sabot-Tarrés, JEMS
2015]; and random matrices, see e.g., [Shcherbyna, 2016] is
related — in the sense that the differential 1-forms provide a
representation for the anti-commuting variables, since

ξ ∧ η = −η ∧ ξ.

Grassmann integration here is, but integration over differential
forms.
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The main point is that Grassman integration gives a nice
representation for the determinants, which are subsequently more
amenable to analysis.

The supersymmetry in Witten-Laplacian, however, has an
additional geometric/topological aspect, which so far do not seem
to appear in the above mentioned applications.
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V. Illustrative proof of the Poincaré (in)equality

Let us consider ∫
fgdµ.

Without loss, one may assume

〈f 〉 = 〈g〉 = 0.

One may therefore write

f = ∆(0)u,

for some u, where for simplicity, we have dropped the
sub/superscripts. Then

(f , g) = (∆(0)u, g)
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= (d∗du, g)

= (du, dg)

= (d(∆(0))−1f , dg)

= ((∆(1))−1df , dg)

= ((∆(0) ⊗ I + 2Φ′′)−1df , dg),

which maybe called the Poincaré equality. If Φ is convex, this
leads to the usual Poincaré inequality, after setting g = f . �

Remark. The log-Sobolev inequalities for entropy:∫
f log f − [

∫
f ] log[

∫
f ],

i.e, the Bacry-Emery (L1 +log version), can be derived similarly in
a slightly lengthier process.
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