Problem 1 (Uniqueness for various boundary conditions, 2+2+2 points).

Let $\Omega \subset \mathbb{R}^n$ be open, bounded, and connected, and suppose that Ω satisfies an interior ball condition at every point on $\partial\Omega$. If $x_0 \in \partial\Omega$, denote by $\nu(x_0)$ the exterior normal to an interior ball tangent to $\partial\Omega$ at x_0 .

Consider $Lu := -\sum_{i,j=1}^{n} a_{ij} u_{x_i x_j} + \sum_{i=1}^{n} b_i u_{x_i} + cu$, where $a_{ij}, b_i, c \in C^0(\overline{\Omega}), c \ge 0$, and a_{ij} are uniformly elliptic. Assume that $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is a solution to Lu = 0 in Ω . Prove:

- a) If the normal derivative $\frac{\partial u}{\partial \nu}$ is defined everywhere on $\partial \Omega$ and $\frac{\partial u}{\partial \nu} = 0$ on $\partial \Omega$, then u is constant in Ω . If furthermore c > 0 at some point in Ω , then $u \equiv 0$.
- b) Assume that $\partial \Omega = \partial_D \Omega \cup \partial_N \Omega$, with $\partial_D \Omega \neq \emptyset$, and that $u \in C^1(\Omega \cup \partial_N \Omega)$ satisfies the mixed boundary condition

$$u = 0 \text{ on } \partial_D \Omega, \qquad \sum_{i=1}^n \beta_i(x) u_{x_i} = 0 \text{ on } \partial_N \Omega,$$

where $\beta(x) = (\beta_1(x), \dots, \beta_n(x))$ has a non-zero normal component (to the interior ball) at each point $x \in \partial_N \Omega$. Then $u \equiv 0$.

c) Assume that $u \in C^1(\overline{\Omega})$ satisfies the regular oblique derivative boundary condition

$$\alpha(x)u + \sum_{i=1}^{n} \beta_i(x)u_{x_i} = 0$$
 on $\partial\Omega$,

where $\alpha(\beta \cdot \nu) > 0$ on $\partial\Omega$. Then $u \equiv 0$.

Problem 2 (Maximum Principle in a narrow domain, 4 points).

Let $\Omega \subset \mathbb{R}^n$ be open and bounded and let $c \in L^{\infty}(\Omega)$. Prove that there exists $d_0 > 0$, depending only on the L^{∞} -norm of c, such that if

$$\Omega \subset \{ x = (x_1, \dots, x_n) \in \mathbb{R}^n : 0 < x_1 < d_0 \}$$

then the maximum principle holds in Ω : if $u \in C^2(\overline{\Omega})$ satisfies

$$\begin{cases} -\Delta u + cu \ge 0 & \text{in } \Omega, \\ u \ge 0 & \text{on } \partial \Omega, \end{cases}$$

then either $u \equiv 0$ or u > 0 in Ω .

Hints: suppose first by contradiction that $\inf_{\Omega} u < 0$. Then for d_0 small enough consider the function $w(x) = \sin(\frac{\pi x_1}{d_0})$ and let

$$\lambda_0 = \inf\{\lambda > 0 : \lambda w + u > 0 \text{ in } \Omega\}.$$

Obtain a contradiction using the refinement of Hopf's Lemma in [Evans, Sect. 9.5, Lemma 1]. Once you have proved that $u \ge 0$ in Ω , prove the dichotomy $u \equiv 0$ or u > 0 by applying again the refined version of Hopf's Lemma.

Problem 3 (Sliding method, 6 points).

Consider a rectangle $R = (-1, 1) \times (0, 1) \subset \mathbb{R}^2$ and let $u \in C^2(\overline{R})$ solve the boundary value problem

$$\begin{cases} -\Delta u = f(u) & \text{in } R, \\ u(x) = g(x) & \text{on } \partial R, \end{cases}$$

where the Dirichlet data satisfy g(-1, y) = 0, g(1, y) = 1 on the vertical boundaries, and on the horizontal boundaries the functions $g_0(x) := g(x, 0), g_1(x) := g(x, 1)$ are strictly monotone increasing. Suppose further that f is Lipschitz continuous and

$$f(s) \ge 0$$
 for $s \le 0$, $f(s) \le 0$ for $s \ge 1$.

Prove that

$$u(x+\tau, y) > u(x, y)$$
 for all $(x, y), (x+\tau, y) \in R$ and $\tau > 0$,

that is, u(x, y) is monotone in x.

Hints: we use a method similar to the moving plane technique. For $\tau \in (0,2)$ let $R_{\tau} = R - \tau e_1$, $D_{\tau} = R \cap R_{\tau}$ and

$$w_{\tau}(x,y) = u(x+\tau,y) - u(x,y) \quad for \ (x,y) \in D_{\tau}.$$

- a) First observe that 0 < u < 1 in R.
- b) For τ close to the largest value $\tau = 2$, use the Maximum Principle in narrow domains (Problem 2) to prove that $w_{\tau} > 0$ in D_{τ} .
- c) As in the moving plane method, decrease τ (sliding the domain R_{τ} to the right), and show (by contradiction) that you can go all the way to $\tau = 0$ keeping the condition $w_{\tau} > 0$ in D_{τ} enforced.

Total: 16 points