University of Bonn Prof. Dr. J. J. L. Velázquez Dr. M. Bonacini

Problem 1 (Condition for Hölder continuity, 4 points).

Let $\Omega \subset \mathbb{R}^n$ be open and $u \in L^{\infty}_{\text{loc}}(\Omega)$. For $x \in \Omega$ and $r < \text{dist}(x, \partial \Omega)$ define the oscillation of u in the ball $B_r(x)$ as

$$\omega(x,r) := \operatorname{ess\,sup}_{B_r(x)} u - \operatorname{ess\,inf}_{B_r(x)} u.$$

Prove that, if there exists $\sigma \in (0,1)$ such that for every $x \in \Omega$ and $r \in (0, \frac{1}{4} \text{dist}(x, \partial \Omega))$

$$\omega(x,r) \le (1-\sigma)\omega(x,4r),$$

then there exists $\bar{u} \in C^{0,\alpha}_{\text{loc}}(\Omega)$, for $\alpha = \log_4 \frac{1}{1-\sigma}$, such that $u = \bar{u}$ almost everywhere in Ω (that is, u has a locally Hölder continuous representative).

Problem 2 (Limit of L^p -norm, 2 points).

Let u be a measurable function in a bounded open set $\Omega \subset \mathbb{R}^n$, u > 0. Prove that

$$\operatorname{ess\,sup}_{x\in\Omega} u(x) = \lim_{p\to\infty} \left(\int_{\Omega} u^p \, \mathrm{d}x \right)^{\frac{1}{p}}, \qquad \operatorname{ess\,sup}_{x\in\Omega} u(x) = \lim_{p\to-\infty} \left(\int_{\Omega} u^p \, \mathrm{d}x \right)^{\frac{1}{p}}.$$

Problem 3 (Maximum principle, 4 points).

Let $\Omega \subset \mathbb{R}^n$ be open and bounded, and consider the elliptic operator

$$Lu = -\sum_{i,j=1}^{n} a_{ij} D_{ij} u + \sum_{j=1}^{n} b_j D_j u + cu,$$

where $a_{ij}, b_j, c \in C(\overline{\Omega}), a_{ij} = a_{ji},$

$$\sum_{i,j=1}^{n} a_{ij}\xi_i\xi_j \ge \alpha |\xi|^2 \quad \text{for all } \xi \in \mathbb{R}^n \,, \qquad c \ge 0 \,.$$

Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfy the inequality $Lu \leq 0$ in Ω .

a) Assume c = 0 and show that

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u \,.$$

Hint: consider first the case Lu < 0; *then consider* $u + \varepsilon e^{\gamma x_1}$ *for suitable* $\gamma > 0$.

b) If $c \ge 0$, show that

$$\max_{\overline{\Omega}} u \le \max_{\partial \Omega} u^+$$

Please turn over.

Problem 4 (Weak formulation of the maximum principle, 6 points).

Let $\Omega \subset \mathbb{R}^n$ be open and bounded. For $u \in H^1(\Omega)$ set $u^+ = \max\{u, 0\}, u^- = \max\{-u, 0\}$.

a) Let $Lu = -\sum_{i,j=1}^{n} D_i(a_{ij}D_ju)$, where the coefficients $a_{ij} \in L^{\infty}(\Omega)$ are elliptic. Assume that $u \in H^1(\Omega)$ is a (weak) subsolution for the operator L, that is $Lu \leq 0$ in the sense

$$\sum_{i,j=1}^n \int_{\Omega} a_{ij} D_j u D_i \varphi \, \mathrm{d} x \le 0 \qquad \text{for every } \varphi \in H^1_0(\Omega) \text{ with } \varphi \ge 0.$$

Prove that, if $(u - M)^+ \in H_0^1(\Omega)$, then $u \leq M$ almost everywhere in Ω $(M \in \mathbb{R})$. In particular we have the comparison principle: if $u, v \in H^1(\Omega)$ satisfy $Lu \leq 0$, $Lv \geq 0$, and $(u - v)^+ \in H_0^1(\Omega)$, then $u \leq v$ almost everywhere in Ω .

b) Define

$$H^1_-(\Omega) = \left\{ u \in H^1(\Omega) : u^+ \in H^1_0(\Omega) \right\}.$$

Show that $u \in H^1_{-}(\Omega)$ if and only if there exist $u_m \in H^1(\Omega)$ and compact sets $K_m \subset \Omega$ such that

$$u_m \leq 0 \quad \text{in } \Omega \setminus K_m, \qquad u_m \to u \quad \text{in } H^1(\Omega).$$

Hint: note that $u = u^+ - u^-$. You can use without proof that $f_m \to f$ in $H^1(\Omega)$ implies $f_m^+ \to f^+$ in $H^1(\Omega)$.

c) Show that, if $u \in H^1(\Omega) \cap C(\overline{\Omega})$ and $u \leq 0$ on $\partial\Omega$, then $u \in H^1_{-}(\Omega)$.

(Therefore this means that the condition $(u-M)^+ \in H^1_0(\Omega)$ is a "weak form" of writing that $u \leq M$ on $\partial\Omega$, when we don't have sufficient regularity of u and $\partial\Omega$).

Total: 16 points