Problem 1 (Regularity for a semilinear problem, 2+2+2 points).

Let $\Omega \subset \mathbb{R}^n$ be open and bounded. Consider the elliptic operator $Lu = -\sum_{i,j=1}^n (a_{ij}u_{x_j})_{x_i}$, where the coefficients $a_{ij} \in C^2(\Omega)$ are symmetric and uniformly elliptic.

a) Suppose that $f \in C^1(\mathbb{R})$ satisfies $||f'||_{\infty} < \infty$. Assume that $u \in H^1(\Omega)$ is a weak solution to

$$Lu = f(u) \quad \text{in } \Omega. \tag{1}$$

Show that $u \in H^3_{\text{loc}}(\Omega)$.

- b) Assume further that $a_{ij} \in C^3(\Omega)$ and $f \in C^2(\mathbb{R})$ with $||f''||_{\infty} < \infty$. Prove that $u \in H^4_{\text{loc}}(\Omega)$, provided that the dimension n of the space is not too large. *Hint: Sobolev Embeddings.*
- c) Let $f(u) = |u|^p$, $p \ge 1$. For which values of p can you write a weak formulation of the equation (1) in $H_0^1(\Omega)$? For which values of p can you ensure that a weak solution u to (1) belongs to $H_{loc}^2(\Omega)$?

Problem 2 (Boundary regularity, 4+2 points).

In \mathbb{R}^2 use the polar coordinates $(x, y) = (r \cos \theta, r \sin \theta)$ and define the angular domain

$$\Omega := \{ (r \cos \theta, r \sin \theta) \in \mathbb{R}^2 : r \in (0, 1), \, \theta \in (0, \omega) \} \,,$$

for $\omega \in (0, 2\pi)$.

a) Check that the function $u(x,y) = r^{\frac{\pi}{\omega}} \sin(\frac{\pi}{\omega}\theta)$ lies in $H^1(\Omega)$ and solves

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial_D \Omega := \{ (r \cos \theta, r \sin \theta) : 0 \le r \le 1, \, \theta \in \{0, \omega\} \}, \\ \frac{\partial u}{\partial \nu} = \frac{\pi}{\omega} \sin(\frac{\pi}{\omega} \theta) & \text{on } \partial_N \Omega := \partial \Omega \backslash \partial_D \Omega \end{cases}$$

(where $\frac{\partial u}{\partial \nu} = Du \cdot \nu$ denotes the derivative of u in the normal direction ν to $\partial_N \Omega$). For which values of ω do we have $u \in H^2(\Omega)$? If $u \notin H^2(\Omega)$ what is the problem?

b) Find a function $f \in C^0(\overline{\Omega})$ such that the unique solution w of the Dirichlet problem $\Delta w = f$ in Ω and w = 0 on $\partial \Omega$ lies in $H^1(\Omega)$ but not in $H^2(\Omega)$. *Hint: write* w = u - v for a smooth function v.

Please turn over.

Problem 3 (Convergence of weak solutions, 4 points).

Let $\Omega \subset \mathbb{R}^n$ be open and bounded, and let $\Omega_k \subset \Omega$ be a sequence of open subsets of Ω such that $\overline{\Omega}_k \subset \Omega_{k+1}$ and $\Omega = \bigcup_{k=1}^{\infty} \Omega_k$. Let $w \in H^1(\Omega)$ and let $u_k \in H^1(\Omega_k)$ be the unique weak solution to

$$\begin{cases} \Delta u_k = 0 & \text{in } \Omega_k, \\ u_k - w \in H_0^1(\Omega_k). \end{cases}$$

By setting

$$\tilde{u}_k(x) := \begin{cases} u_k & \text{in } \Omega_k, \\ w & \text{in } \Omega \backslash \Omega_k, \end{cases}$$

show that \tilde{u}_k converges strongly in $H^1(\Omega)$ to the unique weak solution u to

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ u - w \in H_0^1(\Omega). \end{cases}$$

Total: 16 points