Nonlinear Partial Differential Equations I

University of Bonn Prof. Dr. J. J. L. Velázquez

Winter term 2015/2016 Problem Sheet 11 (due Thursday 21.01.16)

Problem 1 (4 points)

Let $\Omega \subset \mathbb{R}^n$ be open and bounded and consider the problem

$$-\operatorname{div}(a\nabla u) = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega,$$
 (1)

where $f \in H^{-1}(\Omega) = (H^1_0(\Omega))^*$ and $a \in L^{\infty}(\Omega; \mathbb{R}^{n \times n})$ such that

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \ge c_0|\xi|^2 \quad \text{for a. e. } x \in \Omega \text{ and all } \xi \in \mathbb{R}^n.$$

Use the continuation method to show that there exists a unique weak solution $u \in H_0^1(\Omega)$ to (1). You may use without proof that in the case $a_{ij} = c\delta_{ij}$ with c > 0 a unique weak solution exists.

Problem 2 (4 points)

Let $0 < \lambda < n+2$ and $\Omega \subset \mathbb{R}^n$ be open. Show that $u_k \rightharpoonup u$ in $L^2_{\text{loc}}(\Omega)$ implies

$$[u]_{\mathcal{L}^{2,\lambda}(\Omega)} \leq \liminf_{k \to \infty} [u_k]_{\mathcal{L}^{2,\lambda}(\Omega)}$$

where both sides may take the value $+\infty$.

Hint: Passing to a subsequence one may assume that $L := \lim_{k\to\infty} [u_k]_{\mathcal{L}^{2,\lambda}(\Omega)} < \infty$. If the claim is not true, then there are $\delta > 0$, $x_0 \in \Omega$ and $\rho > 0$ such that

$$\rho^{-\lambda} \int_{\Omega(x_0,\rho)} |u - u_{x_0,\rho}|^p > L^2 + \delta.$$

Derive a contradiction to the weak convergence of u_k .

Please turn over.

Problem 3 (8 points)

Assume that the coefficients $A_{ij}^{\alpha\beta}$ are constant and satisfy the Legendre-Hadamard condition $A_{ij}^{\alpha\beta}\zeta_{\alpha}\zeta_{\beta}\eta^{i}\eta^{j} \geq \nu|\zeta|^{2}|\eta|^{2}$ for all $\zeta \in \mathbb{R}^{n}, \eta \in \mathbb{R}^{N}$.

1. Let $f \in L^2(\mathbb{R}^n; \mathbb{R}^{n \times N})$. Show that there exists a weak solution $u \in W^{1,2}_{\text{loc}}(\mathbb{R}^n; \mathbb{R}^N)$ with $\nabla u \in L^2(\mathbb{R}^n; \mathbb{R}^{n \times N})$ of

$$-D_{\alpha}(A_{ij}^{\alpha\beta}D_{\beta}u^{j}) = -D_{\alpha}f_{\alpha}^{i}, \quad i = 1, \dots, N \qquad \left(-\operatorname{div}A\nabla u = -\operatorname{div}f\right),$$

which is uniquely determined up to constants and satisfies

$$\int_{\mathbb{R}^n} |\nabla u|^2 \,\mathrm{d}x \le \frac{1}{\nu^2} \int_{\mathbb{R}^n} |f|^2 \,\mathrm{d}x.$$
(2)

Hints:

- (a) For existence, first obtain a unique solution $u_k \in W^{1,2}(\mathbb{R}^n; \mathbb{R}^N)$ of $-\operatorname{div} A \nabla u_k + \frac{1}{k}u_k = -\operatorname{div} f$. Then, deduce that a subsequence of ∇u_k converges weakly in L^2 and hence $u_k (u_k)_{0,1}$ converges weakly in $W^{1,2}_{\text{loc}}$ to the desired solution.
- (b) For uniqueness, use that reverse Poincaré estimates

$$\sup_{B_{r/2}} |\nabla u|^2 \le \frac{C}{r^{n+2}} \int_{B_r} |u - u_r|^2 \, \mathrm{d}x \le \frac{C}{r^n} \int_{B_r} |\nabla u|^2 \, \mathrm{d}x$$
$$\sup_{B_{r/2}} |\nabla^2 u|^2 \le \frac{C}{r^{n+2}} \int_{B_r} |\nabla u - (\nabla u)_r|^2 \, \mathrm{d}x$$

are true for arbitrary balls.

2. Let $0 < \lambda < n+2$ and $f \in L^2_{loc}(\mathbb{R}^n; \mathbb{R}^{n \times N})$ with $[f]_{\mathcal{L}^{2,\lambda}(\mathbb{R}^n)} < \infty$. Show that there exists a weak solution $u \in W^{1,2}_{loc}(\mathbb{R}^n; \mathbb{R}^N)$ with $[\nabla u]_{\mathcal{L}^{2,\lambda}(\mathbb{R}^n)} < \infty$ of

$$-\mathrm{div}A\nabla u = -\mathrm{div}f,$$

which is uniquely determined up to an affine function and satisfies

$$[\nabla u]_{\mathcal{L}^{2,\lambda}(\mathbb{R}^n)} \le C[f]_{\mathcal{L}^{2,\lambda}(\mathbb{R}^n)}.$$

Hints:

- (a) Assume first that spt $f \subset B_{R_0}(0)$ so that $f \in L^2$. Let u be the solution from 1. and deduce the estimate for $[\nabla u]_{\mathcal{L}^{2,\lambda}(\mathbb{R}^n)}$ from interior estimates and (2).
- (b) For general f let $\eta \in C_c^{\infty}(B_1(0))$ with $\eta = 1$ on $B_{1/2}(0)$ and set $\eta_k(x) = \eta(2^{-k}x)$. Let $f_k = \eta_k(f - f_{0,2^k})$ and let u_k be the solution with right hand side f_k . Show that $[f_k]_{\mathcal{L}^{2,\lambda}(\mathbb{R}^n)} \leq [f]_{\mathcal{L}^{2,\lambda}(\mathbb{R}^n)}$ and $[\nabla u_k]_{\mathcal{L}^{2,\lambda}(\mathbb{R}^n)} \leq C[f]_{\mathcal{L}^{2,\lambda}(\mathbb{R}^n)}$ and deduce that for $\rho \geq 1$ we have

$$\int_{B_{\rho}(0)} |\nabla u_k - (\nabla u_k)_{0,\rho}|^2 \,\mathrm{d}x \le C\rho^{\lambda} [f]^2_{\mathcal{L}^{2,\lambda}(\mathbb{R}^n)},$$
$$|(\nabla u_k)_{0,\rho} - (\nabla u_k)_{0,1}| \le C(\rho) [f]_{\mathcal{L}^{2,\lambda}(\mathbb{R}^n)}.$$

Conclude weak convergence of (a subsequence of) $\nabla u_k - (\nabla u_k)_{0,1}$ and $u_k - (u_k)_{0,1} - (\nabla u_k)_{0,1}x$.