Nonlinear Partial Differential Equations I

University of Bonn Prof. Dr. J. J. L. Velázquez

Winter term 2015/2016 Problem Sheet 10 (due Thursday 14.01.16)

Problem 1 (4 points)

Let Ω be open and bounded with smooth boundary, and for $\varepsilon > 0$ define $\beta_{\varepsilon} \colon \mathbb{R} \to \mathbb{R}$ by

$$eta_arepsilon(z) = egin{cases} 0 & ext{if } z \geq 0, \ rac{z}{arepsilon} & ext{if } z < 0. \end{cases}$$

Given $f \in L^2(\Omega)$, let $u_{\varepsilon} \in H_0^1(\Omega)$ be the weak solution of

$$-\Delta u_{\varepsilon} + \beta_{\varepsilon}(u_{\varepsilon}) = f \quad \text{in } \Omega,$$
$$u_{\varepsilon} = 0 \quad \text{on } \partial\Omega.$$

Show that u_{ε} converges weakly in $H_0^1(\Omega)$ as $\varepsilon \to 0$ to a solution $u \in M$ of the variational inequality

$$\int_{\Omega} \nabla u \cdot \nabla (v - u) \, \mathrm{d}x \ge \int_{\Omega} f(v - u) \, \mathrm{d}x$$

for all $v \in M$, where $M = \{v \in H_0^1(\Omega) : v \ge 0 \text{ a.e. in } \Omega\}$.

Problem 2 (4 points)

Let $\Omega \subset \mathbb{R}^n$ be open and assume that $\Phi \colon \Omega \to \mathbb{R}^n$ is a bi-Lipschitz C^1 -diffeomorphism from Ω to $\Phi(\Omega)$, that is, there is a constant L > 0 such that

$$\frac{1}{L}|x-y| \le |\Phi(x) - \Phi(y)| \le L|x-y| \quad \text{for all} \quad x, y \in \Omega.$$

Let $0 < \lambda < n+2$. Show that $u \in \mathcal{L}^{2,\lambda}(\Phi(\Omega))$ if and only if $u \circ \Phi \in \mathcal{L}^{2,\lambda}(\Omega)$.

Problem 3 (4 points)

Let $\Omega = B_{1/2}(0) \subset \mathbb{R}^2$ and

$$u(x) = (x_1^2 - x_2^2)(-\ln|x|)^{1/2}$$

Show that $\Delta u = f$ in Ω for some function $f \in C(\overline{\Omega})$, but that $u \notin C^{1,1}(\Omega)$.

Problem 4 (EXTRA CREDIT: 4 points)

If $\Delta u = f$ for some $f \in C^{0,1}(\overline{\Omega})$, do we have $u \in C^{2,1}(\Omega)$?

Total: 12 points, extra credit 4 points