Nonlinear Partial Differential Equations I

University of Bonn Prof. Dr. J. J. L. Velázquez

Winter term 2015/2016 Problem Sheet 06 (due Thursday 03.12.15)

Problem 1 (Calderón-Zygmund, 4 points)

Let Q_0 be a cube in \mathbb{R}^n and $u \in L^1(Q_0)$, u > 0 such that

$$u_{Q_0} := \frac{1}{|Q_0|} \int_{Q_0} u \, \mathrm{d}x \le L$$

for some L > 0.

1. Show that there exists a (possibly finite) sequence of pairwise disjoint cubes $Q_j \subset Q_0$ with faces parallel to those of Q_0 such that

$$L < u_{Q_i} \le 2^n L$$

for all $j \in \mathbb{N}$ as well as

$$u \leq L$$
 a.e. in $Q_0 \setminus \cup Q_k$.

Hint: Successively decompose Q_0 .

2. Conclude that u can be composed as u = g + b where the good part g is bounded,

$$|g(x)| \le CL$$
 for a. a. $x \in Q_0$,

and the bad part b satisfies

spt
$$b \subset \cup Q_k$$
, $b_{Q_j} = 0$ and $\int_{Q_j} |b(x)| \, \mathrm{d}x \le CL|Q_j| \quad \forall j \in \mathbb{N}$.

Here C > 0 is a constant depending only on the dimension n.

Problem 2 (BMO, 3 points)

Let Q_0 be a cube in \mathbb{R}^n and suppose that $u \in L^1(Q_0; \mathbb{R}^N)$ has bounded mean oscillation

$$[u]_* := \sup_Q \frac{1}{|Q|} \int_Q |u - u_Q| \, \mathrm{d}x$$

where the supremum is taken over all cubes $Q \subset Q_0$ with sides parallel to those of Q_0 . Show that $u \in L^p(Q_0; \mathbb{R}^N)$ for every $p \ge 1$ and that

$$\frac{1}{|Q|} \int_Q |u - u_Q|^p \,\mathrm{d}x \le C[u]^p_*$$

for every cube $Q \subset Q_0$ whose sides are parallel to Q_0 . Hint: Recall Problem 3.1 on Sheet 5.

Please turn over.

Problem 3 (Maximum Principle, 9 points)

Let $n \geq 2$ and consider the differential operator

$$Lu = \sum_{i,j=1}^{n} a^{ij} D_{ij} u, \qquad a^{ij} = \delta^{ij} + g(r) \frac{x_i x_j}{r^2}, \quad i, j = 1, \dots, n,$$

where $\delta^{ij} = 1$ if i = j, $\delta^{ij} = 0$ otherwise, r = |x| and $g : [0, \infty) \to \mathbb{R}$ is a continuous function.

1. Show that a radially symmetric function u = u(r) is a solution to Lu = 0 in some punctured ball $B_{r_0}(0) \setminus \{0\}$ if and only if it satisfies the ODE

$$\frac{u''}{u'} = \frac{1-n}{r(1+g)}$$

for $0 < r < r_0$, provided that $g \neq -1$ in $B_{r_0}(0)$.

2. If n = 2 and $g(r) = -2/(2 + \ln r)$, show that L is uniformly elliptic in the disk $D = \{0 \le r \le r_0 = e^{-3}\}$ and has continuous coefficients in D. Moreover, show that Lu = 0 has bounded solutions $a + b/\ln r$ in the punctured disk $D \setminus \{0\}$ that do not satisfy

$$\limsup_{x \to 0} u(x) \le \sup_{|x|=r_0} u(x). \tag{1}$$

3. If n > 2 and $g(r) = -[1 + (n-1)\ln r]^{-1}$ show that L is uniformly elliptic and has continuous coefficients in $B = \{0 \le r \le r_0 = e^{-1}\}$. Moreover, show that there are solutions u = u(r) to Lu = 0 in $B \setminus \{0\}$ that satisfy $u = o(r^{2-n})$ as $r \to 0$ but not (1).

Problem 4 (Maximum Principle continued, EXTRA CREDIT 4 points)

In the setting of Problem 3 for n > 2, determine a function g(r) such that L is uniformly elliptic in some ball B and such that Lu = 0 has a bounded solution u = u(r) in $B \setminus \{0\}$, which is continuous at r = 0 and does not satisfy (1).

Total: 16 points, extra credit 4 points

Extra cedit counts towards your personal score but not towards the total marks.