University of Bonn Prof. Dr. J. J. L. Velázquez

Winter term 2015/2016 Problem Sheet 05 (due Thursday 26.11.15)

Problem 1 (4 points)

Let $\Omega \subset \mathbb{R}^n$ be open and $1 \leq p \leq \infty$.

- 1. Assume that $g: \mathbb{R} \to \mathbb{R}$ is continuously differentiable with $\|g'\|_{\infty} \leq C$ and satisfies g(0) = 0 if Ω has infinite measure. Show that $g \circ u \in W^{1,p}(\Omega)$ for all $u \in W^{1,p}(\Omega)$.
- 2. Conclude that

 $u^+ = \max(u, 0), \qquad u^- = -\min(u, 0) \qquad \text{and} \qquad |u|$

belong to $W^{1,p}(\Omega)$ if $u \in W^{1,p}(\Omega)$ and find the corresponding weak derivatives.

Problem 2 (4 points)

Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary.

1. Suppose that $u \in H^1(\Omega)$ satisfies $u \ge 0$ on $\partial \Omega$ and

$$-\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x \le 0$$

for all $v \in H_0^1(\Omega)$ such that $v \ge 0$ a.e. in Ω . Show that $u \ge 0$ a.e. in Ω .

- 2. Let now u, v be smooth in $\overline{\Omega}$ and prove that
 - (a) $\Delta u \leq 0$ in Ω and $u \geq \delta > 0$ on $\partial \Omega$ imply $u \geq \delta$ in Ω ;
 - (b) $-\Delta u \leq -\Delta v$ in Ω and $u \leq v$ on $\partial \Omega$ imply $u \leq v$ in Ω .

Problem 3 (8 points)

Let $\Omega \subset \mathbb{R}^n$ have finite measure and fix $p \in [1, \infty)$.

1. Let $u \in L^p(\Omega)$ and show that

$$\int_{\Omega} |u|^p \,\mathrm{d}x = p \int_0^\infty t^{p-1} |U_t| \,\mathrm{d}t$$

where $U_t = \{x \in \Omega : |u(x)| > t\}.$

2. Show that $L^p(\Omega) \subset \text{w-}L^p(\Omega)$ with

$$|U_t| \le \left(\frac{\|u\|_{L^p}}{t}\right)^p$$

for all t > 0 and all $u \in L^p(\Omega)$. Show that this inequality cannot be improved.

- 3. Show that w- $L^p(\Omega) \subset L^q(\Omega)$ for p > 1 and all $q \in [1, p)$.
- 4. Do we have $L^p(\Omega) \subsetneq w L^p(\Omega)$?