Nonlinear Partial Differential Equations I Winter term 2015/2016 Problem Sheet 03 (due Thursday 12.11.15) University of Bonn Prof. Dr. J. J. L. Velázquez

Problem 1 (H^2 -regularity for a semilinear problem, 3 points)

Let $u \in H^1(\mathbb{R}^n)$ have compact support and be a weak solution of

$$-\Delta u + c(u) = f \qquad \text{in } \mathbb{R}^n,$$

where $f \in L^2(\mathbb{R}^n)$ and $c \in C^1(\mathbb{R})$ with $c(0) = 0, c' \ge 0$. Show that $u \in H^2(\mathbb{R}^n)$.

Problem 2 (Discontinuous coefficients, 1+2+2 points)

Consider the problem

$$(au')' = 2$$
 in $(-1, 1)$,
 $u(\pm 1) = 0$,

where

$$a(x) = \begin{cases} a_{-} & : x < 0, \\ a_{+} & : x > 0 \end{cases}$$

and $a_-, a_+ \in \mathbb{R}_{>0}$.

- 1. Show that there exists a unique weak solution $u \in H^1((-1,1))$.
- 2. Compute the weak solution.

Hint: Compute a smooth solution in (-1,0) and (0,1) and investigate transmission conditions at x = 0.

3. Under what condition(s) is u' continuous?

Problem 3 (Boundary regularity, 4+4 points)

Let (r, φ) be polar coordinates in \mathbb{R}^2 and $\Omega_{\omega} = \{(r \cos \varphi, r \sin \varphi) : 0 < r < 1, 0 < \varphi < \omega\} \subset \mathbb{R}^2, 0 < \omega < 2\pi.$

1. Verify that $u(r, \varphi) = r^{\alpha} \sin \alpha \varphi$ with $\alpha = \pi/\omega$ is a weak solution of

$$\begin{aligned} \Delta u &= 0 & \text{in } \Omega_{\omega}, \\ u &= 0 & \text{on } \Gamma_D = \left\{ (r \cos \varphi, r \sin \varphi) : 0 \le r \le 1, \varphi \in \{0, \omega\} \right\}, \\ \nabla u \cdot \nu &= \alpha \sin \alpha \varphi & \text{on } \Gamma_N = \partial \Omega \setminus \Gamma_D. \end{aligned}$$

For which ω do we have $u \in H^2(\Omega_{\omega})$? If $u \notin H^2(\Omega_{\omega})$ what is the problem?

2. Verify that $u(r,\varphi) = r^{\alpha/2} \cos(\frac{\alpha}{2}\varphi)$ with $\alpha = \pi/\omega$ is a weak solution of

$$\begin{split} \Delta u &= 0 & \text{in } \Omega_{\omega}, \\ u &= 0 & \text{on } \Gamma_D = \left\{ (r \cos \omega, r \sin \omega) : 0 \leq r \leq 1 \right\}, \\ \nabla u \cdot \nu &= 0 & \text{on } \Gamma_{N_1} = (0, 1) \times \{0\}, \\ \nabla u \cdot \nu &= \frac{\alpha}{2} \cos \frac{\alpha}{2} \varphi & \text{on } \Gamma_{N_2} = \{ (\cos \varphi, \sin \varphi) : 0 < \varphi < \omega \} \end{split}$$

and determine whether $u \in H^2(\Omega_{\omega})$.