Prof. Dr. M. Disertori Dr. M. Zaal Institut für Angewandte Mathematik Universität Bonn

PDE and Modelling Exercise sheet 8

Denote by $\Phi : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ the heat kernel:

$$\Phi(x,t) = \begin{cases} \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|^2}{4t}}, & \text{if } t > 0, \\ 0, & \text{if } t \le 0. \end{cases}$$

For t > 0, define $T(t)u = \Phi(t) * u$, and let T(0)u = u. It was shown in Introduction to PDE that T(t) has the following properties (these can be used without proof):

- (i) Smoothing: $(x,t) \mapsto T(t)u(x) \in C^{\infty}(\mathbb{R}^n \times (0,\infty)).$
- (ii) Solution of the heat equation: $(\partial_t \Delta)T(t)u = 0$ for t > 0.
- (iii) Continuity: $t \mapsto T(t)u$ is continuous in $L^p(\mathbb{R}^n)$ whenever $u \in L^p(\mathbb{R}^n)$ and continuous in C^0 if $u \in C^0_c(\mathbb{R}^n)$.
- (iv) Boundedness: $||T(t)u||_X \le ||u||_X$ if $X = L^p$ or $X = C_b^0$.
- (v) Semigroup: T(t+s) = T(t)T(s).

Problem 1 (1 + 1 + 1 + 2 + 2 = 7 points)

- (a) Argue that property (iii) also holds in H^m $(m \in \mathbb{N})$, that is, $t \mapsto T(t)u$ is continuous in H^m whenever $u \in H^m$.
- (b) Prove that property (iv) also holds if $X = H^m$, that is,

$$||T(t)u||_{H^m} \le ||u||_{H^m}$$

for any $u \in H^m$, $m \in \mathbb{N}$.

(c) Show that for $m \in \mathbb{N}$, $u \in H^{m+2}$ and t > 0,

$$||T(t)u - u||_{H^m} \le t ||\Delta u||_{H^m}$$

Hint: Use that $\frac{\partial}{\partial \tau}(T(\tau)u) = \Delta T(\tau)u$ for $\tau > 0$, and estimate $||T(t)u - T(\varepsilon)u||$ for $0 < \varepsilon < t$ first.

(d) Under the same assumptions, show that

$$\lim_{h \downarrow 0} \frac{\|T(h)u - u - h\Delta u\|_{H^m}}{h} = 0,$$

that is, as a map taking values in H^m , $t \mapsto T(t)u$ has right sided derivative Δu at t = 0. Hint: Estimate first $||T(h)u - T(\varepsilon)u - (h - \varepsilon)\Delta u||$, and use property (iv).

(e) Prove that $t \mapsto T(t)u$, taking values in H^m is continuously differentiable.

Problem 2 (1 + 2 + 2 = 5 **points)**

Let $m \ge 1$, and $t^* > 0$. Given $f \in C^0([0, t^*]; H^m)$ $(m \ge 1)$, set

$$v(t) = \int_0^t T(t-s)f(s) \,\mathrm{d}s$$

(a) Show that

$$\sup_{t \in [0,t^*]} \|v(t)\|_{H^{m+1}}.$$

is finite *Hint*: Use that $||T(\tau)f||_{H^{m+1}} \leq \frac{C}{\sqrt{\tau}} ||f||_{H^m}$.

(b) Show that $v \in C^0([0, t^*]; H^{m+1})$, that is, $t \mapsto v(t)$ is continuous as a map from $[0, t^*]$ to H^{m+1} .

Hint: You will need dominated convergence.

(c) Show that $v \in C^1([0, t^*]; H^{m-1})$, that is, there exists a map $v' \in C^0([0, t^*]; H^{m-1})$ such that

$$\lim_{h \to 0} \frac{\|v(t+h) - v(t) - hv'(t)\|}{|h|} = 0,$$

and $\frac{\partial v}{\partial t} = \Delta v + f$. *Hint:* Estimate first $||T(h)u - T(\varepsilon)u - (h - \varepsilon)\Delta u||$, and use property (iv).

Due: Friday, June 26 at the end of the lecture

http://www.iam.uni-bonn.de/afa/teaching/15s/pdgmod/