Prof. Dr. M. Disertori Dr. M. Zaal Institut für Angewandte Mathematik Universität Bonn

PDE and Modelling Exercise sheet 7

Problem 1 (1 + 2 + 2 = 5 points)

Let X be a Banach space with norm $\|.\|_X$, and let $I \subset \mathbb{R}$ be an interval. Denote by $C^0(I;X)$ the space of all continuous functions $f: I \to X$ such that

$$\|f\|_{C^0(I;X)} = \sup_{t \in I} \|f(t)\|_X$$

is finite.

- (a) Show that $C^0(I; X)$ is a Banach space.
- (b) Show that $C^0(I; C_b^0(\mathbb{R}^n))$ is isometrically isomorphic to a subspace of $C_b^0(\mathbb{R}^n \times I)$.
- (c) Let $m \in \mathbb{N}$, $1 \le p \le \infty$, and $f \in C^0(I; W^{m,p}(\mathbb{R}^n))$. Prove that f can be identified with a measurable map $f : \mathbb{R}^n \times I \to \mathbb{R}$.

Hint: Assume first that I is compact, and show that f is uniformly approximated by a map $f_k : I \to C_b^0(\mathbb{R}^n)$ that is piecewise constant and hence measurable as a function on $\mathbb{R}^n \times I$.

Problem 2 (1+1+1+1+2+1=7 points)

Denote by $\Phi : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ the heat kernel:

$$\Phi(x,t) = \begin{cases} \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|^2}{4t}}, & \text{if } t > 0, \\ 0, & \text{if } t \le 0. \end{cases}$$

For t > 0, define $T(t)u = \Phi(t) * u$, and let T(0)u = u. It was shown in Introduction to PDE that T(t) has the following properties (these can be used without proof):

- (i) Smoothing: $(x,t) \mapsto T(t)u(x) \in C^{\infty}(\mathbb{R}^n \times (0,\infty)).$
- (ii) Solution of the heat equation: $(\partial_t \Delta)T(t)u = 0$ for t > 0.
- (iii) Continuity: $t \mapsto T(t)u$ is continuous in $L^p(\mathbb{R}^n)$ whenever $u \in L^p(\mathbb{R}^n)$ and continuous in C^0 if $u \in C^0_c(\mathbb{R}^n)$.
- (iv) Boundedness: $||T(t)u||_X \le ||u||_X$ if $X = L^p$ or $X = C_b^0$.
- (v) Semigroup: T(t+s) = T(t)T(s).
- (a) Let t > 0. Show that $||D^{\alpha}T(t)u||_{C^0} \leq C_k t^{-\frac{k}{2}} ||u||_{C^0}$ for some constant C_k , if $u \in C_b^0(\mathbb{R}^n)$ and $|\alpha| = k$.

Hint: It can be used without proof that $||D^{\alpha}\Phi(t)||_{L^{1}} \leq C_{k}t^{-\frac{k}{2}}$.

Fix $t^* > 0$, write $I := [0, t^*]$, and suppose that $f \in C^1(\mathbb{R}) \cap \operatorname{Lip}(\mathbb{R})$ with f(0) = 0. Given $u \in C^0(I; C_b^0(\mathbb{R}^n))$, define

$$g(s) := f(u(s)), \qquad v(x,t) = \int_0^t [T(t-s)g(s)](x) \, \mathrm{d}s$$

We will now prove that v is a continuous function on $\mathbb{R}^n \times I$.

- (b) Fix $t \ge s > 0$. Show that g(s) and T(t-s)g(s) are continuous functions on \mathbb{R}^n , and estimate their $C^0(\mathbb{R}^n)$ norm in terms of |f(0)|, $\operatorname{Lip}(f)$ and $||u||_{C^0(I;C^0_t(\mathbb{R}^n))}$.
- (c) Show that T(t-s)g(s) is Lipschitz if $0 \le s < t$, and use this to prove that $x \mapsto v(x,t)$ is Lipschitz with Lipschitz constant independent from $t \le t^*$.
- (d) Show that $g \in C^0(I; C_b^0(\mathbb{R}^n))$ and $s \mapsto T(t-s)g(s) \in C^0([0,t]; C_b^0(\mathbb{R}^n))$ for fixed $t \in I$.
- (e) Show that $v \in C^0(I; C_b^0(\mathbb{R}^n))$.

From these results and property (i), we know that G, defined by

$$(Gu)(t) = T(t)u_0 + \int_0^t T(t-s)f(u(s)) \,\mathrm{d}s$$

maps $C^0(I; C_b^0(\mathbb{R}^n))$ to itself.

(f) Suppose that $u \in C^0([0, t^*]; C_b^0(\mathbb{R}^n))$. Show that Gu is Lipschitz, and

$$\operatorname{Lip}((Gu)(t)) \le \frac{C}{\sqrt{t}}$$

for some constant $C, t \in [0, t^*]$.

Problem 3 (Bonus: 2 + 2 + 1 + 1 = 6 **points)**

This exercise deals with basic properties of $L^q(I; X)$ and $L^q(I; W^{m,p}(\mathbb{R}^n))$. Doing this exercise is optional, but the results may be used in other exercises.

Let X be a Banach space with norm $\|.\|_X$, and let $I \subset \mathbb{R}$ be an interval, and $q \geq 1$. For $f \in C^0(I; X)$, denote

$$\|f\|_{L^{q}(I;X)} = \left(\int_{I} \|f(t)\|_{X}^{q} \, \mathrm{d}t\right)^{\frac{1}{p}}$$

Define $L^q(I; X)$ to be the space of all maps $f: I \to X$ such that there exists a sequence $\{f_k\}_{k \in \mathbb{N}}$ in $C^0(I; X)$ with $||f_k - f||_{L^q(I; X)} \to 0$ as $k \to \infty$. Furthermore, $m \in \mathbb{N}, 1 \le p \le \infty$, and consider $L^q(I; W^{m,p}(\mathbb{R}^n))$.

(a) Show that $L^q(I; X)$ is a Banach space.

Hint: Use Egorov's theorem.

- (b) Prove that every $f \in L^q(I; W^{m,p}(\mathbb{R}^n))$ can be identified with a measurable map $f : \mathbb{R}^n \times I \to \mathbb{R}$.
- (c) Prove that $C_c^{\infty}(\mathbb{R}^n \times I)$ is dense in $C^0(I, W^{m,p})$ if I is compact.
- (d) Prove that $C_c^{\infty}(\mathbb{R}^n \times I)$ is dense in $L^q(I, W^{m,p})$ if I is compact.

Problem 4 (1.5 + 1.5 + 2 + 1 = 6 points)

Let I be an interval, and let $m \in \mathbb{N}$, $1 \le p \le \infty$, $1 \le q < \infty$, and suppose that $f : \mathbb{R}^n \times I$ is measurable.

- (a) Show that f can be identified with an element of $L^{q}(I; L^{p}(\mathbb{R}^{n}))$ if $||f||_{L^{q}(I; L^{p}(\mathbb{R}^{n}))}$ is finite.
- (b) Suppose that all distributional derivatives $D^{\alpha}f$ for $\alpha \leq m$ exist in $L^{q}(I; L^{p}(\mathbb{R}^{n}))$. Show that $f \in L^{q}(I; W^{m,p}(\mathbb{R}^{n}))$.
- (c) Suppose that I is compact and $f \in L^1(I; L^p(\mathbb{R}^n))$, and define

$$g(x) = \int_{I} f(x,t) \,\mathrm{d}t$$

Show that $g \in L^p(\mathbb{R}^n)$ with

$$||g||_{L^p} \le \int_I ||f(t)||_{L^p} \,\mathrm{d}t$$

(d) Suppose that I is compact and $f \in L^1(I; W^{m,p}(\mathbb{R}^n))$, and define

$$g(x) = \int_{I} f(x,t) \,\mathrm{d}t$$

Show that $g \in W^{m,p}(\mathbb{R}^n)$ with

$$D^{\alpha}g = D^{\alpha}\int_{I} f(x,t) \,\mathrm{d}t = \int_{I} D^{\alpha}f(x,t) \,\mathrm{d}t, \qquad \|g\|_{W^{m,p}(\mathbb{R}^{n})} \le \int_{I} \|f(t)\|_{W^{m,p}} \,\mathrm{d}t.$$

for $|\alpha| \leq m$.

Due: Friday, June 19 at the end of the lecture

http://www.iam.uni-bonn.de/afa/teaching/15s/pdgmod/