Prof. Dr. M. Disertori Dr. M. Zaal Institut für Angewandte Mathematik Universität Bonn

PDE and Modelling Exercise sheet 3

Problem 1

Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{R}^n . Let V be a simplex in \mathbb{R}^n with faces $S_j \subset \{x \in \mathbb{R}^n \mid x_j = 0\}$ for $j = 1, \ldots, n$ and face S having the normal $\vec{n} = \sum_{j=1}^n n_j e_j$. We assume $n_j > 0$ and $x_j \ge 0$ for $x \in V$ and $j = 1, \ldots, n$. Show

 $\frac{|S_j|}{|S|} = n_j, \qquad \text{where } |S|, |S_j| \text{ are the areas of the faces.}$

Hint: Use the divergence theorem for appropriate vector fields.

Problem 2

Suppose that conservation of mass, momentum and energy (with $r \equiv 0$) hold, i.e.

$$\partial_t \varrho + \operatorname{div}(\varrho v) = 0$$
$$\varrho(\partial_t v + (v \cdot \nabla)v) = \operatorname{div} \sigma + f$$
$$\varrho \frac{D\varepsilon}{Dt} = \sigma : Dv - \operatorname{div} q$$

where we defined $A: B = tr A^T B$. Furthermore assume the following thermodynamic relations: $\varepsilon = a(\theta, \varrho) + \theta \eta$, where $\theta(t, x)$ denotes the temperature at (t, x) and

$$\eta = -\frac{\partial a}{\partial \theta}$$
 and $p = \varrho^2 \frac{\partial a}{\partial \varrho}$

Deduce that

$$\partial_t(\varrho\eta) + \operatorname{div}\left(\frac{q}{\theta} + \varrho\eta v\right) = \frac{1}{\theta}\left(\sigma + p\operatorname{Id}\right) : Dv + q \cdot \nabla \frac{1}{\theta}$$

Problem 3

Consider an ideal incompressible fluid of constant density ρ . It was shown in the lecture that there exists a scalar function p such that the Cauchy stress tensor is of the form $\sigma = -p$ Id. Assume that the fluid is subject to the gravitational body force density $f(x) = -g\rho e_3$, where g > 0 is a constant.

(a) Show that a stationary (time independent) solution of the equation of motion div $\sigma + f = 0$ is given by $p = -g\rho x_3$.

(b) Consider a rigid body of a different constant density $\rho_1 > \rho$ which occupies a domain ω and is surrounded by the fluid. Compute the total force on the body by adding the gravitational force on the body and the force

$$-\int_{\partial\omega}pn\,\mathrm{d}\mathcal{H}^{d-1}$$

on the body. Does the body sink or float?

Hint: Gauß.

Problem 4

Suppose that $\hat{\sigma} : \operatorname{GL}_+(n) \to \mathbb{R}^{n \times n}_{\operatorname{sym}}$ satisfies

- (i) $\hat{\sigma}(QF) = Q\hat{\sigma}(F)Q^T$ for all $Q \in SO(n)$ (frame indifference),
- (ii) $\hat{\sigma}(FG) = \hat{\sigma}(F)$ for all $G \in SL(n)$ (isotropy group of a fluid).
- (a) Use *(ii)* to show that $\hat{\sigma}(F) = \hat{\sigma}(\sqrt[n]{\det F} \operatorname{Id})$.
- (b) Show that $Q\hat{\sigma}(F)Q^T = \hat{\sigma}(F)$.
- (c) Let M be a symmetric matrix such that $M = QMQ^T$ for all $Q \in SO(n)$. Show that $M = \alpha Id$ for some $\alpha \in \mathbb{R}$.

Hint: You may consider a diagonal matrix M and permutation matrices Q first. Then consider the general case. Alternatively you may prove that M cannot have two distinct eigenvalues.

(d) Prove that there exists a function $\hat{p}: (0,\infty) \to \mathbb{R}$ such that $\hat{\sigma}(F) = -\hat{p}(\frac{1}{\det F})$ Id.

Due: Wednesday, May 6 at the end of the lecture

http://www.iam.uni-bonn.de/afa/teaching/15s/pdgmod/