Problem 1 (Hopf's construction for Hamilton–Jacobi equations) Recall from the lecture that for any $y, q \in \mathbb{R}^n$ the affine function

$$v_{y,q}(t,x) = g(y) + q \cdot (x-y) - tH(q)$$

solves the Hamilton–Jacobi equation in the initial value problem

$$\partial_t u + H(Du) = 0 \quad \text{in } \mathbb{R}^n \times \{t > 0\},$$

$$u(0, x) = g(x) \quad \text{on } \mathbb{R}^n \times \{t = 0\},$$

(1)

but does in general not satify the initial condition. Let H be smooth, convex and coercive, and let g be Lipschitz. Show that the envelope

$$v(t,x) = \inf_{y \in \mathbb{R}^n} \sup_{q \in \mathbb{R}^n} v_{y,q}(t,x)$$

solves the initial value problem (1).

Problem 2 (Nonconvex Hamiltonian)

Let $W(p) = (1 - p^2)^2$ be a double-well and consider the initial value problem

$$\partial_t u + W(\partial_x u) = 0 \quad \text{in } \mathbb{R} \times \{t > 0\}, u(0, x) = g(x) \quad \text{on } \mathbb{R} \times \{t = 0\},$$
(2)

with Lipschitz continuous initial data $g \colon \mathbb{R} \to \mathbb{R}$. If W was convex, the Hopf–Lax formula

$$u(t,x) = \inf_{y \in \mathbb{R}} \left\{ t W^* \left(\frac{x-y}{t} \right) + g(y) \right\},\tag{3}$$

where W^* is the Legendre transform of W, would give a solution to (2). Now, since W is not convex, what problem does (3) solve according to the theory of the lecture, that is, what is the Hamilton–Jacobi equation that corresponds to the minimisation problem for W^* ?

Hint: Recall the proof of convex duality. You do not need to compute W^* as intermediate result.

Problem 3 (Discontinuous initial data and Hopf-Lax formula)

Consider the initial value problem

$$\partial_t u + \frac{1}{2} |\partial_x u|^2 = 0 \quad \text{in } \mathbb{R} \times \{t > 0\}, u(0, x) = \chi_{\{y < 0\}}(x) \quad \text{on } \mathbb{R} \times \{t = 0\},$$
(4)

where

$$\chi_{\{y<0\}}(x) = \begin{cases} 1 & \text{if } x \le 0, \\ 0 & \text{if } x > 0 \end{cases}$$

is the characteristic function of the set $\{y < 0\}$.

1. Let u = u(t, x) be given by the Hopf–Lax formula. Show that

$$u(t,x) = \phi(x/\sqrt{t})$$

for some function ϕ . Find ϕ and u. Does u solve (4) in some sense?

2. Using the ansatz $u(t,x) = \psi(x/\sqrt{t})$ for some function $\psi(y)$ in (4), find a boundary value problem for ψ and validate that your ϕ from 1. is a solution in some sense.