Problem 1 (A quasilinear PDE)

Consider the equation

$$x^2 \partial_x u + (y+1)\partial_y u = 0. \tag{1}$$

- 1. Find a solution to (1) in some neighbourhood of the x-axis in \mathbb{R}^2 that satisfies u(x,0) = x.
- 2. Prove that if $u \in C^1(\mathbb{R}^2)$ is a solution to (1) for all $(x, y) \in \mathbb{R}^2$, then u(x, 0) is constant for $x \ge 0$.

Problem 2 (Another nonlinear PDE)

Consider the equation

$$u_y = u_x^3 \qquad \text{in } \mathbb{R}^2. \tag{2}$$

- 1. Find a solution with $u(x,0) = 2x^{3/2}$ near $\Gamma = \{(x,0) : x \in \mathbb{R}\}.$
- 2. Show that every solution to (2) that is regular for all $(x, y) \in \mathbb{R}^2$ is linear.

Problem 3 (Picone)

Let $u \in C^1(\overline{\Omega})$ be a solution to

$$a(x,y)\partial_x u + b(x,y)\partial_y u = -u,$$

where $\Omega = B_1(0)$ is the open unit ball in \mathbb{R}^2 and $a, b \in C^{\infty}(\mathbb{R}^2)$. Assume that a(x, y)x + b(x, y)y > 0 on $\partial\Omega$ and prove $u \equiv 0$ in Ω .

Problem 4 (Blow up in Burgers' equation)

Let $u_0 \in C^{\infty}(\mathbb{R})$ be such that u'_0 is bounded and has a unique minimiser s_0 with $u'_0(s_0) < 0, u''_0(s_0) = 0$, and $u'''_0(s_0) > 0$. Set

$$u(t, x) = u_0(\xi), \qquad x = u_0(\xi)t + \xi.$$

1. Show that there is $0 < t^* < \infty$ such that u solves the equation

$$\partial_t u + u \partial_x u = 0 \qquad \text{for } t \in (0, t^*), \ x \in \mathbb{R}$$
 (3)

and satisfies the initial condition $u(0, x) = u_0(x)$. Determine the largest t^* , which depends on some $\xi^* \in \mathbb{R}$, such that u as a function of (t, x) exists and solves (3). What happens with $\partial_t u$, $\partial_x u$ and the characteristic curves of (3) as $t \to t^*$?

2. Perform a local analysis (Taylor expansion, term comparison) to argue that

$$u(t,x) - u_0(\xi^*) \sim -(x-x^*)^{1/3}$$

close to (t^*, x^*) , where $x^* = u_0(\xi^*)t^* + \xi^*$. Here $a \sim b$ means a = Cb up to some higher order terms.