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e Rough differential equations

e Wong—Zakai theorem

1 Rough differential equations

“Data aequatione quotcunque fluentes quantitates involvente, fluxiones invenire;
et vice versa” (I. Newton)

1.1 Rough apriori estimate on ODEs

Consider the controlled ODE
YO =FQ@)x@), y0)=yo

where x € CI([0, T]; R™), y € CY([0, T]; R% and F € CHR% Z(R™; RY). Let ®: x — y
describe the mapping from x to y. We are interested in understanding this mapping in relation
to an Holder topology on the control x. In order to do so we need a different description of the
ODE, descriprion which does not make reference to the differentiable caracter of the trajecto-
ries. To achieve this goal we expand the solution y aroung a given time s to obtain an equation
describing approximatively how y behaves for times ¢ near s. Standard Taylor formula gives

t t U t U Vv
6y(s,1) =F(y(s)) / dx, + F2(y(s)) / / dx, ® dx, + / / / dFa(y(r))dx, ® dx,

where F5(&)u @ v) = Fé(f)V iF };(f)u“vb (Einstein summation convention). The last term can be
estimated very easily to be of order |r — s]°||x||%. Of course this estimate uses the diffentiability
of x so it is not very good, however it says to us that if we denote by X the canonical rough path
associated to x the ODE can be recast as the finite-increment relation

Sy=F)X'+F,(0)X2+C3%, y(0)=Yyo. (1)
Where only the rough path X appears and there is no (direct) reference to the differentiability of

x (or y). The question is if this new description is as powerful as the original ODE. This is indeed
the case since uniqueness holds under the condition that F € Cj,. and X € €” for y > 1/3.

Theorem 1. (Uniqueness). Assume X €@ with y>1/3 and F € Ci,.. Then there exists only one
function y € C? solving (1).

Proof. Let y,y be two solutions. Then z=y —y is a solution to another RDE in R?x R%:

52=G(, 20X + Ga(y, 2)X2+ 2,



where G(&,n)=F(E+n)— F(&) and Go(&,n) = Fo(E +n) — Fo(€) and where Fe Ci* at least. Note
that G(&, 0) = G2(&, 0) = 0 s0 [G(y, D co,r + [G2(ys D co,r SFy.5 [zl 0,r. Now using again the
equation we estabilish

[zl SFy5.x [l core + 727 [ 37,2

Moreover by a direct computation we show

[6G(7,2) = G20, DX D2ye S ([ o+ 7 [ 3.0)
and then since
82" =(8G(y,2) — Ga(y, XX + Gy (y, )X
we have

1270 37,2 SFoyg.x (2l oo+ 77 2] 37,2
Taking 7 small enough we obtain [[z7] 37,7 SF..5.X [12] o,z from which

(2] co,e < 12(O)| + 77 [I2]] e < 12(0) [ + CFy 5. x77 [12] 0,2
and taking = smaller if necessary we conclude

[2l] co,2 < 22(0)]-
In particular [z]] .. =0 if z(0)=0.
U

This shows that in quite generality eq. (1) describe time evolution of y as well as the corre-
sponding ODE. The advantage of course is that we do not have to assume that x is smooth but
only that the rough path X is of sufficient regularity. However if we start from a rough path
X which is not the canonical lift of a smooth path x we still have to determine whether eq. (1)
admits a solution or not.

1
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One possible strategy applies if X &€ %”Wg. In this case we take 1/3 <p <y and a sequence X" €€
converging to X in 6” and let y" the solution of the ODE driven by x". Then

8= FGMXM 4+ Fa(y" )X 24y, y"(0)=o.

And we would like to pass to the limit as n — co under minimal conditions on F. To do so we need
the following apriori estimates.

Lemma 2. Apriori bounds for solutions. Assume that ||VF2||le + ||VF || < +00 and that y is a
solution on [0,T] of

Sy=Fy)X' + Fy(y)X2+y"



then
3, S CrIXNlgr 1 (D] e + [¥ 2.0)-

Moreover there exists T small such that

.2+ ¥ 27,2 < IX Nl 1(IFGO)) + [ F2(y(0)]).

Proof. The equation for y? reads

8y = (8F(y) = Fa(n) X)X + 8Fa(y)X2.

Now
1
SF(y)(s, 1) = Fa(y(s)X!(s,1) = / drVF(y(s)+ 78y(s,1))5y(s, 1) — Fa(y(s)X (s, 1)
0
1 1
= / de(VF(y(s) + t8y(s, ) F (y(s)) — F2(y())X (s, 1) + / drVF(y(s) +z8y(s, 1))y (s, 1)
0 0
1
= / dr(Fa(y(s)+7y(s, 1)) — Fa(y(s))X! (s, 1)
0
1 T
—/ dr/ doVF(y(s)+16y(s,t))VF((s) + 00y(s,1))oy(s, HX(s,1)
0 0
1
+ / deVF(y(s) +18y(s, 1))y*(s, 1)
0
SO
16F ) — F20)X!l2, SUIVF2lloo + IVEIZ) IV I IX + IV lloo 1yl 2,
Finally
[[yh]] 3yt 5 CF”X”‘@V,I( [[y]] }’,7+ [[yﬂ]] 27/,1)
SO
272 < IF20)] o IX N7, + Cre 11Xl 1 (V] .+ ¥ 27.0)
and

]5.c < [FO) o, llXlg7.1 + 77 [F20)] oo, IXNlr 1 + CRe? Xl 1 (] e+ Y] 27,0)
But now since

[[F(Y)]] 00,T+ HFZ(Y)]] 00,7 < |F(Y(0))| + |F2(Y(0))| + TyCF [M] 7.7

we have

.2+ ¥ 27 < A+ )X N7 1 (IFGO))] + 1 F2(0(0)])

+Cr (@ + 72 + )X %7 (] e+ [ 2.0)



and taking = small enough we have

1.2+ ¥ 27,2 < IX Nl 1(IFGO))] + [ F2(y(0)]).

This lemma shows that for 7> 0 small enough (can be choosen uniformly in n) we have
[ < IX lgr 1 (1F (O] + [F2(r(0))]).
and since [|X"||,,1 is bounded we have uniform apriori Holder estimates for (y"),. By

Ascoli—Arzela we can find a converging subsequence (always called (y"),). Note moreover that
the apriori estimates gives also

" 35,2 S CrIIX 51 (F ((O)] + [ F2(y(0))])
so in the end we have that
V(s 1) = 8y"(s. 1) = F(Y($)X™ (s, 1) = Fa(y" () X™ (s, 1)
converges pointwise to
(s, 1)=08y(s, 1) = FO(s) X (5,1) = Fa(y()X(s. 1)

and that [[yu]] 3p,z < co. This shows existence of solutions in the case of a geometric X. The apriori
estimates can then be used to show that [[y?]] 3y, < 0.

If X is not geometric we proceed slightly differently. In particular we know that there exists a
sequence (X" € ‘g;)n and a sequence of functions (¢" € C'), such that X" = X"+ (0,6¢") converges
in 67 to X. Then we define y" as the solution to the ODE

Y'=FQMx"+ F2(")g"
and it is easy to check that even in this case
8y =F (X! +Fa(")X + 5",

From which the proof proceed as above. In conclusion we have proven that

Theorem 3. Assume that ||VF2||le + ||VF|leo < +00 and X € 6". Then there exists a global
solution to the RDE (1). If F € Cfoc this solution is unique.

Without proceeding via approximations it is possible to prove existence via a fixpoint argument
in the space of controlled paths. This goes as follows.

Consider the map I': (y,y¥) ~ (z,zX) given by

Sz=FW)X + VFO)Y*X2+,  ZX=F(y)



with 2#€ C3”. By Theorem 12 and Lemma 13 we have that
IFG, FOYN g2 S Cr[1+ 1047 520 ) >
[FO) N o0,e SIFOYX O+ [FO . S IFGX O +77Cr[1+ [0y 50 >
IGz.20 52 , S IX g2 1 (IFG) N oo + 2 [(F ). FOYD 50 )

SIX Nl FOX O+ 7 Crll Xl [1+ [0:5) o2 ]
Fix L> ||X||.1|F(y)*(0)| and take 7 small enough so that

IXllg7 IFO)X (O] + 7 CrlIXllgr 1 [1+ LIPS L.
Then I maps the ball

BL={(y"€ DY [y g , <L} S DY

into itself. It is not difficult to prove that I' is also continuous in the norm [[(y, y)] 9% . and that
X7

By is convex and compact. By Schauder fixed point theorm there exists at least one y satisfying
y=LQ).

Remark 4. With a bit more of regularity on F, e.g. bounded with 2 bounded derivatives one
can actually show that the map I is a contraction for 7 small enough. This ensures existence via
Banach fix point theorem. This has the advantage of being more elementary and of not requiring
a compact image for I'. As a result this strategy works quite easily also for RDEs in infinite
dimension.

Remark 5. The condition ||VF ||« + || V2F ||« < o0 is not sufficient to guarantee global existence
of solutions. Indeed there exists F' with linear growth such that ||V F3|| =00 and for which we
have explosion for a particular X. For example, one can take pure area rough path X=(0, d¢) with
@(t)=Ct. In this case the RDE is a standard ODE of the form

dy="F>(y)Cdz

and we can arrange things such that F,(y)= O(yz).

2 The Wong-Zakai theorem

In this section we want to sketch the proof of the Wong—Zakai theorem for Stratonovich SDE.
Let (B(#)):ef0.1] be a m—dimensional Brownian motion and F a Ci’ family of vectorfields in R4
as above. We denote by B" piecewise linear approximations of B on the dyadic partition D, =
{tf=k27™™k=0,...,2"} and by Y” the solution of the random ODE

oY () =F(Y"(1)0:B"(1),  Y"(0)=yo.

Then the Wong—Zakai theorem states that:



Theorem 6. (Wong-Zakai) The family (Y"),»o converges a.s. in C([0, 1]; RY) to the solution Y
of the Stratonovich SDE

dY(@)=F(Y())dB(),  Y(0)=yo.

In order to prove this result with rough path techniques we need several steps

1. Identify Y” with the solution y"* of the RDE driven by the canonical lift B” of B” in 6" for
some y€(1/3,1/2).

2. Prove that B" — Bg, in 67 almost surely.

3. Prove that y" converges to the solution y of the RDE driven by B in C? (for example).

4. Identify the rough integral controlled by Bs, with the standard Stratonovich integral.
Let us start with the last point. Recall that if H is a Brownian semi-—martingale with decompo-

sition dH = hdB + kdt and B a Brownian motion (both adapted to the same filtration) then the
Stratonovich integral of H wrt. B can be expressed via the Ito integral by

/ lH(s)odB(s): / tH(s)dB(s)+% / lh(s)ds.
0 0 0

Lemma 7. Let (H,H?®) be an adapted and bounded process which belongs a.s. to 9@7. Then the
Ito integral of H against B equals a.s. the analogous controlled integral against the Ito Rough
Path over B.

Proof. Recall that the Ito integral fOtH (5)dB(s) is the L? limit of the Riemann sums

Y H(t)3B(ti i41)

over a family of partitions of [0, #/] while the rough integral can be computed as the limit of the
compensated Riemman sums

D H@oB( 1)+ Y HAGBt fi41)-

So we need to show that the difference is going to zero (in probability or L? for example). But
since H8 is bounded and adapted and B2(t;, ti41) is independent of &, we have

[E[(Z HE(t,)B(1, t,'+1)>2] S z EIHE(t)*|t;41— 11> = 0.



Theorem 8. B" — Bgy; almost surely in 67 for any y<1/2.

Proof. Fix y < p < 1/2. Let (&, = 6(Bs; t € Dy))ux0 the o-field of observations of B along
the dyadic partitions of [0, 1]. A simple Gaussian computation shows that B"(t) = E(B(?)|€)
for ¢+ € [0, 1]. In this way we can look at the piecewise linear approximations as conditional
expectations of B along (&,),. Then, for each ¢t € [0, 1] the L? martingale (B"(t)), converges
a.s. to B(t) and recalling the (dyadic) Garcia—Rodemich—-Rumsey inequality we have ||B"||, <
C ,0,(B") < C ,Q,(E(B(-)|%,)) for some 1 < p <+oo0 (which depends on p). Taking expectations
and using Jensen's inequality we get

EllB"[l; < C yEQHEBM)IZn)? < CLEIEIQp(B)’|Z411< CpCpE[Qp(B)P] < +00

using a standard argument. Now observe that choosing 0 < € < 1 such that (1 — €)p =y we have
(with AN =B"—B)

|5A" (s, D) < ISA"(s, DIISA" (5, D'~ K IBA" (8 1) + EA (5,5) + SA" (1, ||| A"[| 75 — 5|1
SISA" (s, )N A1y 0Ne = 5172+ 20| A7) 27 e — 5| =%

where s, 1, are the points in D, nearer to s, f respectively. Since D, is a finite set and for all r €D,
we have A"(t) - 0 a.s. Then

16B%(s. )]

=] < sup |6A"(s, t)|s”An”;—s+2”An”p2_npg_)0

s,te€Dy,

sup

since ||A"[|, < co a.s.. It remains to prove the equivalent convergence statement for B'™2. First we
note that the symmetric part § B™%(s,t) of B™2(s,7) is equal to %[EB”’I(S, HRB™(s,1) so convergence
of SB™?to %[EB] ® B' =SB, in C%y follows by the convergence of B! =§B". In order to deal

with the antisymmetric component it is enough to prove convergence for (B™2)"/ for i# j. In this
case we have

B"2(s, 1) = / (B™(u) — B™(5))dB™ (u)

and a direct computation using the Riemman sums approximation of the r.h.s. gives B™*(s, 1)/ =
E[B>(s,1)"/|€,]. Then a.s. convergence holds as above by the L? martingale convergence theorem
and also we have a.s. uniform boundedness in C%p of (B"2),. An interpolation argument as above
concludes the proof that ||B™? — [EB%tratsz —0a.s. O

Lemma 9. If X" — X in €7 then the solution y" of the RDE driven by X" converges in C7 to the
solution y of the RDE driven by X.

Proof. The idea is to use the sewing lemma to compare the two solutions. Let z=y" —y then

8z=Fy)X' = FG)XH 4+ F(0)X2 = F(") X2 4
and

8= (8F (y) = Fa)XH)X! = (BF (y") = Fa(y")X™ X" 4 Fa(y) X2 = 5F2(3") X2,



A straigforward estimation of the various terms leads to (z< 1)

(20 3. S (2l o+ (2] coe) + 2 [z 370 + X = X1, 4 12 = X2,

where the implicit constant can depend on y,y", X, X" but can be checked to be uniformly bounded
in n. Using the equation we have also

Iy S [ell oo 11X = XMy 41X = X2, + 7% 2] 3, ¢
Taking 7z small enough we obtain
Izl et [ 37,0 S Tell oo+ X =X 4+ X2 = X212y

But now we have also

[zl c0.c S12(0) + 77 [2]l,.«

so finally (for 7 sufficiently small)
[l co.e+ [zl e+ [ 37,0 S [2CO) 4+ IXE = X1, 4+ (X2 = X2,

and since z(0) =0 this quantity goes to zero as n — oo.
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