rev 1 - 20160131

- Rough differential equations
- Wong–Zakai theorem

1 Rough differential equations

"Data aequatione quotcunque fluentes quantitates involvente, fluxiones invenire; et vice versa" (I. Newton)

1.1 Rough apriori estimate on ODEs

Consider the controlled ODE

 $\dot{y}(t) = F(y(t))\dot{x}(t), \quad y(0) = y_0$

where $x \in C^1([0, T]; \mathbb{R}^m)$, $y \in C^1([0, T]; \mathbb{R}^d)$ and $F \in C^2(\mathbb{R}^d; \mathscr{L}(\mathbb{R}^m; \mathbb{R}^d))$. Let $\Phi: x \mapsto y$ describe the mapping from x to y. We are interested in understanding this mapping in relation to an Holder topology on the control x. In order to do so we need a different description of the ODE, description which does not make reference to the differentiable caracter of the trajectories. To achieve this goal we expand the solution y aroung a given time s to obtain an equation describing approximatively how y behaves for times t near s. Standard Taylor formula gives

$$\delta y(s,t) = F(y(s)) \int_s^t dx_u + F_2(y(s)) \int_s^t \int_s^u dx_v \otimes dx_u + \int_s^t \int_s^u \int_s^v d_r F_2(y(r)) dx_v \otimes dx_u$$

where $F_2^i(\xi)(u \otimes v) = F_a^j(\xi) \nabla_j F_b^i(\xi) u^a v^b$ (Einstein summation convention). The last term can be estimated very easily to be of order $|t - s|^3 ||\dot{x}||_{\infty}^2$. Of course this estimate uses the differitability of *x* so it is not very good, however it says to us that if we denote by \aleph the canonical rough path associated to *x* the ODE can be recast as the finite-increment relation

$$\delta y = F(y) \mathbb{X}^1 + F_2(y) \mathbb{X}^2 + C_2^{1+}, \quad y(0) = y_0.$$
⁽¹⁾

Where only the rough path \times appears and there is no (direct) reference to the differentiability of *x* (or *y*). The question is if this new description is as powerful as the original ODE. This is indeed the case since uniqueness holds under the condition that $F \in C_{loc}^3$ and $\times \in \mathscr{C}^{\gamma}$ for $\gamma > 1/3$.

Theorem 1. (Uniqueness). Assume $\aleph \in C^{\gamma}$ with $\gamma > 1/3$ and $F \in C_{loc}^3$. Then there exists only one function $y \in C^{\gamma}$ solving (1).

Proof. Let y, \tilde{y} be two solutions. Then $z = \tilde{y} - y$ is a solution to another RDE in $\mathbb{R}^d \times \mathbb{R}^d$:

$$\delta z = G(y, z) \mathbb{X}^1 + G_2(y, z) \mathbb{X}^2 + z^{\natural},$$

where $G(\xi, \eta) = F(\xi + \eta) - F(\xi)$ and $G_2(\xi, \eta) = F_2(\xi + \eta) - F_2(\xi)$ and where $z^{\natural} \in C_2^{1+}$ at least. Note that $G(\xi, 0) = G_2(\xi, 0) = 0$ so $[[G(y, z)]]_{\infty, \tau} + [[G_2(y, z)]]_{\infty, \tau} \lesssim_{F, y, \tilde{y}} [[z]]_{\infty, \tau}$. Now using again the equation we estabilish

$$[[z]]_{\gamma,\tau} \lesssim_{F,y,\tilde{y},\mathcal{K}} [[z]]_{\infty,\tau} + \tau^{2\gamma} [[z^{\natural}]]_{3\gamma,\tau}$$

Moreover by a direct computation we show

$$[\![\delta G(y,z) - G_2(y,z) \mathbb{X}^1]\!]_{2\gamma,\tau} \lesssim_{F,y,\tilde{y},\mathbb{X}} ([\![z]\!]_{\infty,\tau} + \tau^{\gamma} [\![z^{\natural}]\!]_{3\gamma,\tau})$$

and then since

$$\delta z^{\natural} = (\delta G(y, z) - G_2(y, z) \mathbb{X}^1) \mathbb{X}^1 + \delta G_2(y, z) \mathbb{X}^2$$

we have

$$\llbracket z^{\natural} \rrbracket_{\Im\gamma,\tau} \lesssim_{F,y,\tilde{y},\mathbb{X}} \llbracket z \rrbracket_{\infty,\tau} + \tau^{\gamma} \llbracket z^{\natural} \rrbracket_{\Im\gamma,\tau}$$

Taking τ small enough we obtain $[\![z^{\natural}]\!]_{3\gamma,\tau} \lesssim_{F,y,\tilde{y},\mathbb{X}} [\![z]\!]_{\infty,\tau}$ from which

$$[[z]]_{\infty,\tau} \leq |z(0)| + \tau^{\gamma} [[z]]_{\gamma,\tau} \leq |z(0)| + C_{F,y,\tilde{y},\mathbb{X}} \tau^{\gamma} [[z]]_{\infty,\tau}$$

and taking τ smaller if necessary we conclude

$$[\![z]\!]_{\infty,\tau} \leq 2|z(0)|.$$

In particular $[[z]]_{\infty,\tau} = 0$ if z(0) = 0.

This shows that in quite generality eq. (1) describe time evolution of y as well as the corresponding ODE. The advantage of course is that we do not have to assume that x is smooth but only that the rough path X is of sufficient regularity. However if we start from a rough path X which is not the canonical lift of a smooth path x we still have to determine whether eq. (1) admits a solution or not.

One possible strategy applies if $X \in \mathscr{C}_{wg}^{\gamma}$. In this case we take $1/3 < \rho < \gamma$ and a sequence $X^n \in \mathscr{C}_{g,x^n}^1$ converging to X in \mathscr{C}^{ρ} and let y^n the solution of the ODE driven by x^n . Then

$$\delta y^{n} = F(y^{n}) \mathbb{X}^{n,1} + F_{2}(y^{n}) \mathbb{X}^{n,2} + y^{n,\natural}, \qquad y^{n}(0) = y_{0}.$$

And we would like to pass to the limit as $n \to \infty$ under minimal conditions on *F*. To do so we need the following apriori estimates.

Lemma 2. Apriori bounds for solutions. Assume that $\|\nabla F_2\|_{\infty} + \|\nabla F\|_{\infty} < +\infty$ and that y is a solution on [0, T] of

$$\delta y = F(y) \mathbb{X}^1 + F_2(y) \mathbb{X}^2 + y^{\natural}$$

then

$$\llbracket y^{\natural} \rrbracket_{3\gamma,\tau} \lesssim C_F \lVert \mathbb{X} \rVert_{\mathscr{C}^{\gamma},1} (\llbracket y \rrbracket_{\gamma,\tau} + \llbracket y^{\natural} \rrbracket_{2\gamma,\tau}).$$

Moreover there exists τ small such that

$$[[y]]_{\gamma,\tau} + [[y^{\sharp}]]_{2\gamma,\tau} \leq ||X||_{\mathscr{C}^{\gamma},1}(|F(y(0))| + |F_2(y(0))|).$$

Proof. The equation for y^{\natural} reads

$$\delta y^{\natural} = (\delta F(y) - F_2(y) \mathbb{X}^1) \mathbb{X}^1 + \delta F_2(y) \mathbb{X}^2.$$

Now

$$\begin{split} \delta F(\mathbf{y})(s,t) &- F_2(\mathbf{y}(s)) \mathbb{X}^1(s,t) = \int_0^1 \mathrm{d}\tau \nabla F(\mathbf{y}(s) + \tau \delta \mathbf{y}(s,t)) \delta \mathbf{y}(s,t) - F_2(\mathbf{y}(s)) \mathbb{X}^1(s,t) \\ &= \int_0^1 \mathrm{d}\tau (\nabla F(\mathbf{y}(s) + \tau \delta \mathbf{y}(s,t)) F(\mathbf{y}(s)) - F_2(\mathbf{y}(s))) \mathbb{X}^1(s,t) + \int_0^1 \mathrm{d}\tau \nabla F(\mathbf{y}(s) + \tau \delta \mathbf{y}(s,t)) \mathbf{y}^\sharp(s,t) \\ &= \int_0^1 \mathrm{d}\tau (F_2(\mathbf{y}(s) + \tau \delta \mathbf{y}(s,t)) - F_2(\mathbf{y}(s))) \mathbb{X}^1(s,t) \\ &- \int_0^1 \mathrm{d}\tau \int_0^\tau \mathrm{d}\sigma \nabla F(\mathbf{y}(s) + \tau \delta \mathbf{y}(s,t)) \nabla F(\mathbf{y}(s) + \sigma \delta \mathbf{y}(s,t)) \delta \mathbf{y}(s,t) \mathbb{X}^1(s,t) \\ &+ \int_0^1 \mathrm{d}\tau \nabla F(\mathbf{y}(s) + \tau \delta \mathbf{y}(s,t)) \mathbf{y}^\sharp(s,t) \end{split}$$

so

$$\|\delta F(y) - F_2(y) \mathbb{X}^1\|_{2\gamma} \lesssim (\|\nabla F_2\|_{\infty} + \|\nabla F\|_{\infty}^2) \|y\|_{\gamma} \|\mathbb{X}^1\|_{\gamma} + \|\nabla F\|_{\infty} \|y^{\sharp}\|_{2\gamma}$$

Finally

 $\llbracket y^{\natural} \rrbracket_{3\gamma,\tau} \lesssim C_F \lVert \mathbb{X} \rVert_{\mathscr{C}^{\gamma},1} (\llbracket y \rrbracket_{\gamma,\tau} + \llbracket y^{\natural} \rrbracket_{2\gamma,\tau})$

so

$$\llbracket y^{\sharp} \rrbracket_{2\gamma,\tau} \leq \llbracket F_2(y) \rrbracket_{\infty,\tau} \lVert \mathbb{X} \rVert_{\mathscr{C}^{\gamma},1} + C_F \tau^{\gamma} \lVert \mathbb{X} \rVert_{\mathscr{C}^{\gamma},1} (\llbracket y \rrbracket_{\gamma,\tau} + \llbracket y^{\sharp} \rrbracket_{2\gamma,\tau})$$

and

$$[[y]]_{\gamma,\tau} \leq [[F(y)]]_{\infty,\tau} \|X\|_{\mathscr{C}^{\gamma},1} + \tau^{\gamma} [[F_2(y)]]_{\infty,\tau} \|X\|_{\mathscr{C}^{\gamma},1} + C_F \tau^{2\gamma} \|X\|_{\mathscr{C}^{\gamma},1} ([[y]]_{\gamma,\tau} + [[y^{\sharp}]]_{2\gamma,\tau})$$

But now since

$$[[F(y)]]_{\infty,\tau} + [[F_2(y)]]_{\infty,\tau} \leq |F(y(0))| + |F_2(y(0))| + \tau^{\gamma} C_F[[y]]_{\gamma,\tau}$$

we have

$$[\![y]\!]_{\gamma,\tau} + [\![y^{\sharp}]\!]_{2\gamma,\tau} \leq (1+\tau^{\gamma}) \|X\|_{\mathscr{C}^{\gamma},1} (|F(y(0))| + |F_2(y(0))|)$$

$$+C_{F}(\tau^{\gamma}+\tau^{2\gamma}+\tau^{3\gamma})\|X\|_{\mathscr{C}^{\gamma},1}^{2}([[y]]_{\gamma,\tau}+[[y^{\sharp}]]_{2\gamma,\tau})$$

and taking τ small enough we have

$$[[y]]_{\gamma,\tau} + [[y^{\sharp}]]_{2\gamma,\tau} \leq ||X||_{\mathscr{C}^{\gamma},1} (|F(y(0))| + |F_2(y(0))|).$$

This lemma shows that for $\tau > 0$ small enough (can be choosen uniformly in *n*) we have

$$[[y^n]]_{\rho,\tau} \leq ||X^n||_{\mathscr{C}^{\rho},1}(|F(y(0))| + |F_2(y(0))|).$$

and since $\|X^n\|_{\rho,1}$ is bounded we have uniform apriori Hölder estimates for $(y^n)_n$. By Ascoli–Arzela we can find a converging subsequence (always called $(y^n)_n$). Note moreover that the apriori estimates gives also

$$[[y^{n,\natural}]]_{3\rho,\tau} \leq C_F ||X^n||_{\rho,1}^2 (|F(y(0))| + |F_2(y(0))|)$$

so in the end we have that

$$y^{n,\natural}(s,t) = \delta y^n(s,t) - F(y^n(s)) \mathbb{X}^{n,1}(s,t) - F_2(y^n(s)) \mathbb{X}^{n,2}(s,t)$$

converges pointwise to

$$y^{\natural}(s,t) = \delta y(s,t) - F(y(s)) \mathbb{X}^{1}(s,t) - F_{2}(y(s)) \mathbb{X}^{2}(s,t)$$

and that $[\![y^{\natural}]\!]_{3\rho,\tau} < \infty$. This shows existence of solutions in the case of a geometric X. The apriori estimates can then be used to show that $[\![y^{\natural}]\!]_{3\gamma,\tau} < \infty$.

If \mathbb{X} is not geometric we proceed slightly differently. In particular we know that there exists a sequence $(\tilde{\mathbb{X}}^n \in \mathcal{C}_g^1)_n$ and a sequence of functions $(\varphi^n \in C^1)_n$ such that $\mathbb{X}^n = \tilde{\mathbb{X}}^n + (0, \delta \varphi^n)$ converges in \mathcal{C}^ρ to \mathbb{X} . Then we define y^n as the solution to the ODE

$$\dot{y}^n = F(y^n)\dot{x}^n + F_2(y^n)\dot{\varphi}^n$$

and it is easy to check that even in this case

$$\delta y^n = F(y^n) \mathbb{X}^1 + F_2(y^n) \mathbb{X}^2 + y^{n,\natural}.$$

From which the proof proceed as above. In conclusion we have proven that

Theorem 3. Assume that $\|\nabla F_2\|_{\infty} + \|\nabla F\|_{\infty} < +\infty$ and $X \in \mathcal{C}^{\gamma}$. Then there exists a global solution to the RDE (1). If $F \in C^3_{\text{loc}}$ this solution is unique.

Without proceeding via approximations it is possible to prove existence via a fixpoint argument in the space of controlled paths. This goes as follows.

Consider the map $\Gamma: (y, y^X) \mapsto (z, z^X)$ given by

$$\delta z = F(y) \mathbb{X}^1 + \nabla F(y) y^X \mathbb{X}^2 + z^{\natural}, \qquad z^X = F(y)$$

with $z^{\natural} \in C_2^{3\gamma}$. By Theorem 12 and Lemma 13 we have that

$$\begin{split} \| (F(y), F(y)^{X}) \|_{\mathscr{D}^{2\gamma}_{X,\tau}} &\lesssim C_{F} \left[1 + \| (y, y^{X}) \|_{\mathscr{D}^{2\gamma}_{X,\tau}} \right]^{2} \\ \| F(y)^{X} \|_{\infty,\tau} &\leqslant |F(y)^{X}(0)| + \tau^{\gamma} \| F(y)^{X} \|_{\gamma,\tau} \leqslant |F(y)^{X}(0)| + \tau^{\gamma} C_{F} \left[1 + \| (y, y^{X}) \|_{\mathscr{D}^{2\gamma}_{X,\tau}} \right]^{2} \\ \| (z, z^{X}) \|_{\mathscr{D}^{2\gamma}_{X,\tau}} &\lesssim \| \| \|_{\mathscr{C}^{\gamma},1} (\| F(y)^{X} \|_{\infty,\tau} + \tau^{\gamma} \| (F(y), F(y)^{X}) \|_{\mathscr{D}^{2\gamma}_{X,\tau}}) \\ &\lesssim \| \| \|_{\mathscr{C}^{\gamma},1} |F(y)^{X}(0)| + \tau^{\gamma} C_{F} \| \|_{\mathscr{C}^{\gamma},1} \left[1 + \| (y, y^{X}) \|_{\mathscr{D}^{2\gamma}_{X,\tau}} \right]^{2} . \end{split}$$

Fix $L > ||X||_{\mathscr{C}^{\tau},1}|F(y)^{X}(0)|$ and take τ small enough so that

$$\|X\|_{\mathscr{C}^{\gamma},1}|F(y)^{X}(0)| + \tau^{\gamma}C_{F}\|X\|_{\mathscr{C}^{\gamma},1}[1+L]^{2} \leq L.$$

Then Γ maps the ball

$$B_L = \left\{ (y, y^X) \in \mathscr{D}_{\mathbb{X}}^{2\gamma} \colon \llbracket (y, y^X) \rrbracket_{\mathscr{D}_{\mathbb{Y},\tau}^{2\gamma}} \leqslant L \right\} \subseteq \mathscr{D}_{\mathbb{X}}^{2\gamma}$$

into itself. It is not difficult to prove that Γ is also continuous in the norm $[[(y, y^X)]]_{\mathscr{D}^{2\gamma}_{X,\tau}}$ and that B_L is convex and compact. By Schauder fixed point theorem there exists at least one y satisfying $y = \Gamma(y)$.

Remark 4. With a bit more of regularity on F, e.g. bounded with 2 bounded derivatives one can actually show that the map Γ is a contraction for τ small enough. This ensures existence via Banach fix point theorem. This has the advantage of being more elementary and of not requiring a compact image for Γ . As a result this strategy works quite easily also for RDEs in infinite dimension.

Remark 5. The condition $\|\nabla F\|_{\infty} + \|\nabla^2 F\|_{\infty} < \infty$ is not sufficient to guarantee global existence of solutions. Indeed there exists *F* with linear growth such that $\|\nabla F_2\|_{\infty} = +\infty$ and for which we have explosion for a particular X. For example, one can take pure area rough path $X = (0, \delta \varphi)$ with $\varphi(t) = Ct$. In this case the RDE is a standard ODE of the form

$$dy = F_2(y)Cdt$$

and we can arrange things such that $F_2(y) = O(y^2)$.

2 The Wong–Zakai theorem

In this section we want to sketch the proof of the Wong–Zakai theorem for Stratonovich SDE. Let $(B(t))_{t \in [0,1]}$ be a *m*-dimensional Brownian motion and *F* a C_b^3 family of vectorfields in \mathbb{R}^d as above. We denote by B^n piecewise linear approximations of *B* on the dyadic partition $D_n = \{t_k^n = k 2^{-n}: k = 0, ..., 2^n\}$ and by Y^n the solution of the random ODE

$$\partial_t Y^n(t) = F(Y^n(t))\partial_t B^n(t), \qquad Y^n(0) = y_0.$$

Then the Wong–Zakai theorem states that:

Theorem 6. (Wong–Zakai) The family $(Y^n)_{n \ge 0}$ converges a.s. in $C([0, 1]; \mathbb{R}^d)$ to the solution Y of the Stratonovich SDE

$$dY(t) = F(Y(t)) \circ dB(t), \qquad Y(0) = y_0.$$

In order to prove this result with rough path techniques we need several steps

- 1. Identify Y^n with the solution y^n of the RDE driven by the canonical lift \mathbb{B}^n of B^n in \mathscr{C}^{γ} for some $\gamma \in (1/3, 1/2)$.
- 2. Prove that $\mathbb{B}^n \to \mathbb{B}_{\text{Strat}}$ in \mathscr{C}^{γ} almost surely.
- 3. Prove that y^n converges to the solution y of the RDE driven by \mathbb{B} in C^{γ} (for example).
- 4. Identify the rough integral controlled by \mathbb{B}_{Stat} with the standard Stratonovich integral.

Let us start with the last point. Recall that if *H* is a Brownian semi-martingale with decomposition dH = hdB + kdt and *B* a Brownian motion (both adapted to the same filtration) then the Stratonovich integral of *H* wrt. *B* can be expressed via the Ito integral by

$$\int_0^t H(s) \circ \mathrm{d}B(s) = \int_0^t H(s) \mathrm{d}B(s) + \frac{1}{2} \int_0^t h(s) \mathrm{d}s.$$

Lemma 7. Let (H, H^B) be an adapted and bounded process which belongs a.s. to $\mathscr{D}_{\mathbb{B}}^{2\gamma}$. Then the *Ito integral of H against B equals a.s. the analogous controlled integral against the Ito Rough Path over B.*

Proof. Recall that the Ito integral $\int_0^t H(s) dB(s)$ is the L^2 limit of the Riemann sums

$$\sum_{i} H(t_i) \delta B(t_i, t_{i+1})$$

over a family of partitions of [0, t] while the rough integral can be computed as the limit of the *compensated* Riemman sums

$$\sum_{i} H(t_i) \delta B(t_i, t_{i+1}) + \sum_{i} H^B(t_i) \mathbb{B}^2(t_i, t_{i+1}).$$

So we need to show that the difference is going to zero (in probability or L^2 for example). But since H^B is bounded and adapted and $\mathbb{B}^2(t_i, t_{i+1})$ is independent of \mathcal{F}_{t_i} we have

$$\mathbb{E}\left[\left(\sum_{i}H^{B}(t_{i})\mathbb{B}^{2}(t_{i},t_{i+1})\right)^{2}\right]\lesssim\sum_{i}\mathbb{E}|H^{B}(t_{i})|^{2}|t_{i+1}-t_{i}|^{2}\rightarrow0.$$

Theorem 8. $\mathbb{B}^n \to \mathbb{B}_{\text{Strat}}$ almost surely in \mathcal{C}^{γ} for any $\gamma < 1/2$.

Proof. Fix $\gamma < \rho < 1/2$. Let $(\mathscr{G}_n = \sigma(B_t; t \in D_n))_{n \ge 0}$ the σ -field of observations of B along the dyadic partitions of [0, 1]. A simple Gaussian computation shows that $B^n(t) = \mathbb{E}(B(t)|\mathscr{G}_n)$ for $t \in [0, 1]$. In this way we can look at the piecewise linear approximations as conditional expectations of B along $(\mathscr{G}_n)_n$. Then, for each $t \in [0, 1]$ the L^2 martingale $(B^n(t))_n$ converges a.s. to B(t) and recalling the (dyadic) Garcia–Rodemich–Rumsey inequality we have $||B^n||_{\rho} \leq C_p Q_p(B^n) \leq C_p Q_p(\mathbb{E}(B(\cdot)|\mathscr{G}_n))$ for some $1 (which depends on <math>\rho$). Taking expectations and using Jensen's inequality we get

$$\mathbb{E}\|B^n\|_p^p \leqslant C_p \mathbb{E}Q_p(\mathbb{E}(B(\cdot)|\mathcal{G}_n))^p \leqslant C_p \mathbb{E}[\mathbb{E}[Q_p(B)^p|\mathcal{G}_n]] \leqslant C_p C_p \mathbb{E}[Q_p(B)^p] < +\infty$$

using a standard argument. Now observe that choosing $0 < \varepsilon < 1$ such that $(1 - \varepsilon)\rho = \gamma$ we have (with $\Delta^N = B^n - B$)

$$\begin{split} |\delta\Delta^{n}(s,t)| &\leq |\delta\Delta^{n}(s,t)|^{\varepsilon} |\delta\Delta^{n}(s,t)|^{1-\varepsilon} \leq |\delta\Delta^{n}(s_{n},t_{n}) + \delta\Delta^{n}(s_{n},s) + \delta\Delta^{n}(t_{n},t)|^{\varepsilon} ||\Delta^{n}||_{\rho}^{1-\varepsilon} |t-s|^{(1-\varepsilon)\rho} \\ &\leq |\delta\Delta^{n}(s_{n},t_{n})|^{\varepsilon} ||\Delta^{n}||_{\rho}^{1-\varepsilon} |t-s|^{(1-\varepsilon)\rho} + 2||\Delta^{n}||_{\rho} 2^{-n\rho\varepsilon} |t-s|^{(1-\varepsilon)\rho} \end{split}$$

where s_n, t_n are the points in D_n nearer to s, t respectively. Since D_n is a finite set and for all $t \in D_n$ we have $\Delta^n(t) \to 0$ a.s. Then

$$\sup_{s < t} \frac{|\delta B^n(s, t)|}{|t - s|^{\gamma}} \leq \sup_{s, t \in D_n} |\delta \Delta^n(s, t)|^{\varepsilon} ||\Delta^n||_{\rho}^{1 - \varepsilon} + 2||\Delta^n||_{\rho} 2^{-n\rho\varepsilon} \to 0$$

since $\|\Delta^n\|_{\rho} < \infty$ a.s.. It remains to prove the equivalent convergence statement for $\mathbb{B}^{n,2}$. First we note that the symmetric part $S\mathbb{B}^{n,2}(s,t)$ of $\mathbb{B}^{n,2}(s,t)$ is equal to $\frac{1}{2}\mathbb{B}^{n,1}(s,t) \otimes \mathbb{B}^{n,1}(s,t)$ so convergence of $S\mathbb{B}^{n,2}$ to $\frac{1}{2}\mathbb{B}^1 \otimes \mathbb{B}^1 = S\mathbb{B}^2_{\text{Strat}}$ in $C_2^{2\gamma}$ follows by the convergence of $\mathbb{B}^{n,1} = \delta B^n$. In order to deal with the antisymmetric component it is enough to prove convergence for $(\mathbb{B}^{n,2})^{i,j}$ for $i \neq j$. In this case we have

$$\mathbb{B}^{n,2}(s,t)^{i,j} = \int_{s}^{t} (B^{n,i}(u) - B^{n,i}(s)) \mathrm{d}B^{n,j}(u)$$

and a direct computation using the Riemman sums approximation of the r.h.s. gives $\mathbb{B}^{n,2}(s,t)^{i,j} = \mathbb{E}[\mathbb{B}^2(s,t)^{i,j}|\mathcal{G}_n]$. Then a.s. convergence holds as above by the L^2 martingale convergence theorem and also we have a.s. uniform boundedness in $C_2^{2\rho}$ of $(\mathbb{B}^{n,2})_n$. An interpolation argument as above concludes the proof that $\|\mathbb{B}^{n,2} - \mathbb{B}^2_{\text{Strat}}\|_{2\gamma} \to 0$ a.s.

Lemma 9. If $\mathbb{X}^n \to \mathbb{X}$ in \mathcal{C}^{γ} then the solution y^n of the RDE driven by \mathbb{X}^n converges in \mathcal{C}^{γ} to the solution *y* of the RDE driven by \mathbb{X} .

Proof. The idea is to use the sewing lemma to compare the two solutions. Let $z = y^n - y$ then

$$\delta z = F(y) \mathbb{X}^{1} - F(y^{n}) \mathbb{X}^{n,1} + F_{2}(y) \mathbb{X}^{2} - F_{2}(y^{n}) \mathbb{X}^{n,2} + z^{\natural}$$

and

$$\delta z^{\natural} = (\delta F(y) - F_2(y) \mathbb{X}^1) \mathbb{X}^1 - (\delta F(y^n) - F_2(y^n)) \mathbb{X}^{n,1} \mathbb{X}^{n,1} + \delta F_2(y) \mathbb{X}^2 - \delta F_2(y^n) \mathbb{X}^{n,2}.$$

A straigforward estimation of the various terms leads to $(\tau \leq 1)$

$$[[z^{\natural}]]_{3\gamma,\tau} \lesssim ([[z]]_{\gamma,\tau} + [[z]]_{\infty,\tau}) + \tau^{\gamma} [[z^{\natural}]]_{3\gamma,\tau} + ||X^{1} - X^{n,1}||_{\gamma} + ||X^{2} - X^{n,2}||_{2\gamma}$$

where the implicit constant can depend on y, y^n, X, X^n but can be checked to be uniformly bounded in *n*. Using the equation we have also

$$[[z]]_{\gamma,\tau} \lesssim [[z]]_{\infty,\tau} + ||X^1 - X^{n,1}||_{\gamma} + ||X^2 - X^{n,2}||_{2\gamma} + \tau^{2\gamma} [[z^{\natural}]]_{3\gamma,\tau}$$

Taking τ small enough we obtain

$$[[z]]_{\gamma,\tau} + [[z^{\natural}]]_{3\gamma,\tau} \lesssim [[z]]_{\infty,\tau} + ||X^{1} - X^{n,1}||_{\gamma} + ||X^{2} - X^{n,2}||_{2\gamma}$$

But now we have also

$$\llbracket z \rrbracket_{\infty,\tau} \lesssim |z(0)| + \tau^{\gamma} \llbracket z \rrbracket_{\gamma,\tau}$$

so finally (for τ sufficiently small)

$$[[z]]_{\infty,\tau} + [[z]]_{\gamma,\tau} + [[z^{\natural}]]_{3\gamma,\tau} \lesssim |z(0)| + ||X^{1} - X^{n,1}||_{\gamma} + ||X^{2} - X^{n,2}||_{2\gamma}$$

and since z(0) = 0 this quantity goes to zero as $n \to \infty$.