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• Rough differential equations

• Wong–Zakai theorem

1 Rough differential equations
“Data aequatione quotcunque fluentes quantitates involvente, fluxiones invenire;
et vice versa” (I. Newton)

1.1 Rough apriori estimate on ODEs

Consider the controlled ODE

ẏ(t) = F(y(t))ẋ(t), y(0) =y0

where x ∈ C1([0, T]; ℝm), y ∈ C1([0, T]; ℝd) and F ∈ C2(ℝd; ℒ(ℝm; ℝd)). Let Φ: x ↦ y
describe the mapping from x to y. We are interested in understanding this mapping in relation
to an Holder topology on the control x. In order to do so we need a different description of the
ODE, descriprion which does not make reference to the differentiable caracter of the trajecto-
ries. To achieve this goal we expand the solution y aroung a given time s to obtain an equation
describing approximatively how y behaves for times t near s. Standard Taylor formula gives

δy(s, t) =F(y(s))∫s

t
dxu + F2(y(s))∫s

t

∫s

u
dxv ⊗ dxu + ∫s

t

∫s

u

∫s

v
drF2(y(r))dxv ⊗ dxu

where F2
i (ξ)(u ⊗ v) = Fa

j(ξ)∇jFb
i (ξ)uavb (Einstein summation convention). The last term can be

estimated very easily to be of order ∣t − s∣3‖ẋ‖∞
2 . Of course this estimate uses the diffentiability

of x so it is not very good, however it says to us that if we denote by 𝕏 the canonical rough path
associated to x the ODE can be recast as the finite-increment relation

δy =F(y)𝕏1 +F2(y)𝕏2 +C2
1+, y(0) =y0. (1)

Where only the rough path 𝕏 appears and there is no (direct) reference to the differentiability of
x (or y). The question is if this new description is as powerful as the original ODE. This is indeed
the case since uniqueness holds under the condition that F ∈Cloc

3 and 𝕏 ∈𝒞γ for γ >1/3.

Theorem 1. (Uniqueness). Assume 𝕏∈ 𝒞γ with γ > 1/3 and F ∈Cloc
3 . Then there exists only one

function y ∈Cγ solving (1).

Proof. Let y,y~ be two solutions. Then z =y~−y is a solution to another RDE in ℝd ×ℝd:

δz= G(y, z)𝕏1 +G2(y, z)𝕏2 + z♮,
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where G(ξ, η) = F(ξ + η) − F(ξ) and G2(ξ, η) = F2(ξ + η) − F2(ξ) and where z♮ ∈ C2
1+ at least. Note

that G(ξ, 0) = G2(ξ, 0) = 0 so ⟦G(y, z)⟧∞,τ + ⟦G2(y, z)⟧∞,τ ≲F,y,y~ ⟦z⟧∞,τ. Now using again the
equation we estabilish

⟦z⟧γ,τ ≲F,y,y~,𝕏 ⟦z⟧∞,τ +τ2γ⟦z♮⟧3γ,τ

Moreover by a direct computation we show

⟦δG(y, z) − G2(y, z)𝕏1⟧2γ,τ ≲F,y,y~,𝕏 (⟦z⟧∞,τ +τγ⟦z♮⟧3γ,τ)

and then since

δz♮ =(δG(y, z) − G2(y, z)𝕏1)𝕏1 +δG2(y, z)𝕏2

we have

⟦z♮⟧3γ,τ ≲F,y,y~,𝕏 ⟦z⟧∞,τ +τγ⟦z♮⟧3γ,τ

Taking τ small enough we obtain ⟦z♮⟧3γ,τ ≲F,y,y~,𝕏 ⟦z⟧∞,τ from which

⟦z⟧∞,τ ⩽ ∣z(0)∣+ τγ⟦z⟧γ,τ ⩽ ∣z(0)∣+ CF,y,y~,𝕏τγ⟦z⟧∞,τ

and taking τ smaller if necessary we conclude

⟦z⟧∞,τ ⩽ 2∣z(0)∣.

In particular ⟦z⟧∞,τ =0 if z(0) =0.

□

This shows that in quite generality eq. (1) describe time evolution of y as well as the corre-
sponding ODE. The advantage of course is that we do not have to assume that x is smooth but
only that the rough path 𝕏 is of sufficient regularity. However if we start from a rough path
𝕏 which is not the canonical lift of a smooth path x we still have to determine whether eq. (1)
admits a solution or not.

One possible strategy applies if 𝕏∈𝒞wg
γ . In this case we take 1/3<ρ<γ and a sequence 𝕏n∈𝒞g,xn1

converging to 𝕏 in 𝒞ρ and let yn the solution of the ODE driven by xn. Then

δyn = F(yn)𝕏n,1 +F2(yn)𝕏n,2 +yn,♮, yn(0) = y0.

And we would like to pass to the limit as n→∞ under minimal conditions on F. To do so we need
the following apriori estimates.

Lemma 2. Apriori bounds for solutions. Assume that ‖∇F2‖∞ + ‖∇F‖∞ < +∞ and that y is a
solution on [0, T] of

δy =F(y)𝕏1 +F2(y)𝕏2 +y♮
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then

⟦y♮⟧3γ,τ ≲CF‖𝕏‖𝒞γ,1(⟦y⟧γ,τ +⟦y♯⟧2γ,τ).

Moreover there exists τ small such that

⟦y⟧γ,τ +⟦y♯⟧2γ,τ ⩽‖𝕏‖𝒞γ,1(∣F(y(0))∣+ ∣F2(y(0))∣).

Proof. The equation for y♮ reads

δy♮ = (δF(y) − F2(y)𝕏1)𝕏1 + δF2(y)𝕏2.

Now

δF(y)(s, t) − F2(y(s))𝕏1(s, t) =∫0

1
dτ∇F(y(s) + τδy(s, t))δy(s, t) − F2(y(s))𝕏1(s, t)

=∫0

1
dτ(∇F(y(s) + τδy(s, t))F(y(s)) −F2(y(s)))𝕏1(s, t) + ∫0

1
dτ∇F(y(s) +τδy(s, t))y♯(s, t)

=∫0

1
dτ(F2(y(s) + τδy(s, t)) −F2(y(s)))𝕏1(s, t)

−∫0

1
dτ∫0

τ
dσ∇F(y(s) +τδy(s, t))∇F(y(s) + σδy(s, t))δy(s, t)𝕏1(s, t)

+∫0

1
dτ∇F(y(s) + τδy(s, t))y♯(s, t)

so

‖δF(y) − F2(y)𝕏1‖2γ ≲ (‖∇F2‖∞ + ‖∇F‖∞
2 )‖y‖γ‖𝕏1‖γ + ‖∇F‖∞‖y♯‖2γ

Finally

⟦y♮⟧3γ,τ ≲ CF‖𝕏‖𝒞γ,1(⟦y⟧γ,τ + ⟦y♯⟧2γ,τ)

so

⟦y♯⟧2γ,τ ⩽⟦F2(y)⟧∞,τ‖𝕏‖𝒞γ,1 +CF τγ‖𝕏‖𝒞γ,1(⟦y⟧γ,τ + ⟦y♯⟧2γ,τ)

and

⟦y⟧γ,τ ⩽ ⟦F(y)⟧∞,τ‖𝕏‖𝒞γ,1 +τγ⟦F2(y)⟧∞,τ‖𝕏‖𝒞γ,1 +CF τ2γ‖𝕏‖𝒞γ,1(⟦y⟧γ,τ + ⟦y♯⟧2γ,τ)

But now since

⟦F(y)⟧∞,τ + ⟦F2(y)⟧∞,τ ⩽ ∣F(y(0))∣+ ∣F2(y(0))∣+ τγCF⟦y⟧γ,τ

we have

⟦y⟧γ,τ + ⟦y♯⟧2γ,τ ⩽ (1+ τγ)‖𝕏‖𝒞γ,1(∣F(y(0))∣ + ∣F2(y(0))∣)

+CF (τγ +τ2γ +τ3γ)‖𝕏‖𝒞γ,1
2 (⟦y⟧γ,τ + ⟦y♯⟧2γ,τ)
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and taking τ small enough we have

⟦y⟧γ,τ +⟦y♯⟧2γ,τ ⩽‖𝕏‖𝒞γ,1(∣F(y(0))∣+ ∣F2(y(0))∣).

□

This lemma shows that for τ >0 small enough (can be choosen uniformly in n) we have

⟦yn⟧ρ,τ ⩽ ‖𝕏n‖𝒞ρ,1(∣F(y(0))∣+ ∣F2(y(0))∣).

and since ‖𝕏n‖ρ,1 is bounded we have uniform apriori Hölder estimates for (yn)n. By
Ascoli–Arzela we can find a converging subsequence (always called (yn)n). Note moreover that
the apriori estimates gives also

⟦yn,♮⟧3ρ,τ ≲CF‖𝕏n‖ρ,1
2 (∣F(y(0))∣+ ∣F2(y(0))∣)

so in the end we have that

yn,♮(s, t) =δyn(s, t) − F(yn(s))𝕏n,1(s, t) −F2(yn(s))𝕏n,2(s, t)

converges pointwise to

y♮(s, t) = δy(s, t) −F(y(s))𝕏1(s, t) − F2(y(s))𝕏2(s, t)

and that ⟦y♮⟧3ρ,τ <∞. This shows existence of solutions in the case of a geometric 𝕏. The apriori
estimates can then be used to show that ⟦y♮⟧3γ,τ <∞.

If 𝕏 is not geometric we proceed slightly differently. In particular we know that there exists a
sequence (𝕏~ n∈𝒞g

1)n and a sequence of functions (φn∈C1)n such that 𝕏n=𝕏~ n+(0,δφn) converges
in 𝒞ρ to 𝕏. Then we define yn as the solution to the ODE

ẏn =F(yn)ẋn +F2(yn)φ̇n

and it is easy to check that even in this case

δyn =F(yn)𝕏1 +F2(yn)𝕏2 +yn,♮.

From which the proof proceed as above. In conclusion we have proven that

Theorem 3. Assume that ‖∇F2‖∞ + ‖∇F‖∞ < +∞ and 𝕏 ∈ 𝒞γ. Then there exists a global
solution to the RDE (1). If F ∈ Cloc

3 this solution is unique.

Without proceeding via approximations it is possible to prove existence via a fixpoint argument
in the space of controlled paths. This goes as follows.

Consider the map Γ: (y,yX) ↦(z, zX) given by

δz =F(y)𝕏1 +∇F(y)yX𝕏2 + z♮, zX = F(y)
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with z♮ ∈C2
3γ. By Theorem 12 and Lemma 13 we have that

⟦(F(y), F(y)X)⟧𝒟𝕏
2γ,τ ≲ CF[1+ ⟦(y,yX)⟧𝒟𝕏

2γ,τ]2.

⟦F(y)X⟧∞,τ ⩽∣F(y)X(0)∣ +τγ⟦F(y)X⟧γ,τ ⩽∣F(y)X(0)∣ +τγCF[1+ ⟦(y,yX)⟧𝒟𝕏
2γ,τ]2.

⟦(z, zX)⟧𝒟𝕏
2γ,τ ≲‖𝕏‖𝒞γ,1(⟦F(y)X⟧∞,τ +τγ⟦(F(y), F(y)X)⟧𝒟𝕏

2γ,τ)

≲‖𝕏‖𝒞γ,1∣F(y)X(0)∣+ τγCF‖𝕏‖𝒞γ,1[1 +⟦(y, yX)⟧𝒟𝕏
2γ,τ]2.

Fix L >‖𝕏‖𝒞γ,1∣F(y)X(0)∣ and take τ small enough so that

‖𝕏‖𝒞γ,1∣F(y)X(0)∣ +τγCF‖𝕏‖𝒞γ,1[1+ L]2 ⩽ L.

Then Γ maps the ball

BL ={(y, yX) ∈ 𝒟𝕏
2γ:⟦(y, yX)⟧𝒟𝕏

2γ,τ ⩽ L}⊆ 𝒟𝕏
2γ

into itself. It is not difficult to prove that Γ is also continuous in the norm ⟦(y, yX)⟧𝒟𝕏
2γ,τ and that

BL is convex and compact. By Schauder fixed point theorm there exists at least one y satisfying
y =Γ(y).

Remark 4. With a bit more of regularity on F, e.g. bounded with 2 bounded derivatives one
can actually show that the map Γ is a contraction for τ small enough. This ensures existence via
Banach fix point theorem. This has the advantage of being more elementary and of not requiring
a compact image for Γ. As a result this strategy works quite easily also for RDEs in infinite
dimension.

Remark 5. The condition ‖∇F‖∞ + ‖∇2F‖∞ < ∞ is not sufficient to guarantee global existence
of solutions. Indeed there exists F with linear growth such that ‖∇F2‖∞ =+∞ and for which we
have explosion for a particular 𝕏. For example, one can take pure area rough path 𝕏=(0,δφ) with
φ(t) =Ct. In this case the RDE is a standard ODE of the form

dy =F2(y)Cdt

and we can arrange things such that F2(y) =O(y2).

2 The Wong–Zakai theorem
In this section we want to sketch the proof of the Wong–Zakai theorem for Stratonovich SDE.
Let (B(t))t∈[0,1] be a m–dimensional Brownian motion and F a Cb

3 family of vectorfields in ℝd

as above. We denote by Bn piecewise linear approximations of B on the dyadic partition Dn =
{tkn =k 2−n:k =0, …,2n} and by Yn the solution of the random ODE

∂tYn(t) =F(Yn(t))∂tBn(t), Yn(0) = y0.

Then the Wong–Zakai theorem states that:
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Theorem 6. (Wong–Zakai) The family (Yn)n⩾0 converges a.s. in C([0, 1]; ℝd) to the solution Y
of the Stratonovich SDE

dY(t) = F(Y(t)) ∘ dB(t), Y(0) =y0.

In order to prove this result with rough path techniques we need several steps

1. Identify Yn with the solution yn of the RDE driven by the canonical lift 𝔹n of Bn in 𝒞γ for
some γ ∈(1/3,1/2).

2. Prove that 𝔹n →𝔹Strat in 𝒞γ almost surely.

3. Prove that yn converges to the solution y of the RDE driven by 𝔹 in Cγ (for example).

4. Identify the rough integral controlled by 𝔹Stat with the standard Stratonovich integral.

Let us start with the last point. Recall that if H is a Brownian semi–martingale with decompo-
sition dH = hdB + kdt and B a Brownian motion (both adapted to the same filtration) then the
Stratonovich integral of H wrt. B can be expressed via the Ito integral by

∫0

t
H(s) ∘ dB(s) = ∫0

t
H(s)dB(s) + 1

2∫0

t
h(s)ds.

Lemma 7. Let (H ,HB) be an adapted and bounded process which belongs a.s. to 𝒟𝔹
2γ. Then the

Ito integral of H against B equals a.s. the analogous controlled integral against the Ito Rough
Path over B.

Proof. Recall that the Ito integral ∫0
tH(s)dB(s) is the L2 limit of the Riemann sums

∑
i

H(ti)δB(ti, ti+1)

over a family of partitions of [0, t] while the rough integral can be computed as the limit of the
compensated Riemman sums

∑
i

H(ti)δB(ti, ti+1) +∑
i

HB(ti)𝔹2(ti, ti+1).

So we need to show that the difference is going to zero (in probability or L2 for example). But
since HB is bounded and adapted and 𝔹2(ti, ti+1) is independent of ℱti we have

𝔼[(∑
i

HB(ti)𝔹2(ti, ti+1))
2

]≲∑
i

𝔼∣HB(ti)∣2∣ti+1 − ti∣2 →0.

□
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Theorem 8. 𝔹n → 𝔹Strat almost surely in 𝒞γ for any γ <1/2.

Proof. Fix γ < ρ < 1 / 2. Let (𝒢n = σ(Bt; t ∈ Dn))n⩾0 the σ-field of observations of B along
the dyadic partitions of [0, 1]. A simple Gaussian computation shows that Bn(t) = 𝔼(B(t)∣𝒢n)
for t ∈ [0, 1]. In this way we can look at the piecewise linear approximations as conditional
expectations of B along (𝒢n)n. Then, for each t ∈ [0, 1] the L2 martingale (Bn(t))n converges
a.s. to B(t) and recalling the (dyadic) Garcia–Rodemich–Rumsey inequality we have ‖Bn‖ρ ⩽
C pQp(Bn) ⩽ C pQp(𝔼(B(⋅)∣𝒢n)) for some 1 < p < +∞ (which depends on ρ). Taking expectations
and using Jensen's inequality we get

𝔼‖Bn‖ρ
p ⩽C p𝔼Qp(𝔼(B(⋅)∣𝒢n))p ⩽ Cp𝔼[𝔼[Qp(B)p∣𝒢n]] ⩽ CpCp𝔼[Qp(B)p] < +∞

using a standard argument. Now observe that choosing 0 < ε < 1 such that (1 − ε)ρ = γ we have
(with ΔN =Bn −B)

∣δΔn(s, t)∣ ⩽ ∣δΔn(s, t)∣ε∣δΔn(s, t)∣1−ε ⩽ ∣δΔn(sn, tn) +δΔn(sn, s) + δΔn(tn, t)∣ε‖Δn‖ρ
1−ε∣t − s∣(1−ε)ρ

≲∣δΔn(sn, tn)∣ε‖Δn‖ρ
1−ε∣t − s∣(1−ε)ρ +2‖Δn‖ρ2−nρε∣t − s∣(1−ε)ρ

where sn, tn are the points in Dn nearer to s, t respectively. Since Dn is a finite set and for all t ∈Dn
we have Δn(t) →0 a.s. Then

sup
s<t

∣δBn(s, t)∣
∣t − s∣γ ⩽ sup

s,t∈Dn

∣δΔn(s, t)∣ε‖Δn‖ρ
1−ε + 2‖Δn‖ρ2−nρε → 0

since ‖Δn‖ρ <∞ a.s.. It remains to prove the equivalent convergence statement for 𝔹n,2. First we
note that the symmetric part S𝔹n,2(s, t) of 𝔹n,2(s, t) is equal to 1

2𝔹n,1(s, t)⊗𝔹n,1(s, t) so convergence
of S𝔹n,2 to 1

2𝔹1 ⊗ 𝔹1 = S𝔹Strat
2 in C2

2γ follows by the convergence of 𝔹n,1 = δBn. In order to deal
with the antisymmetric component it is enough to prove convergence for (𝔹n,2)i, j for i≠ j. In this
case we have

𝔹n,2(s, t)i, j = ∫s

t
(Bn,i(u) −Bn,i(s))dBn, j(u)

and a direct computation using the Riemman sums approximation of the r.h.s. gives 𝔹n,2(s, t)i, j =
𝔼[𝔹2(s, t)i, j∣𝒢n]. Then a.s. convergence holds as above by the L2 martingale convergence theorem
and also we have a.s. uniform boundedness in C2

2ρ of (𝔹n,2)n. An interpolation argument as above
concludes the proof that ‖𝔹n,2 −𝔹Strat

2 ‖2γ →0 a.s. □

Lemma 9. If 𝕏n → 𝕏 in 𝒞γ then the solution yn of the RDE driven by 𝕏n converges in Cγ to the
solution y of the RDE driven by 𝕏.

Proof. The idea is to use the sewing lemma to compare the two solutions. Let z =yn −y then

δz= F(y)𝕏1 − F(yn)𝕏n,1 + F2(y)𝕏2 − F2(yn)𝕏n,2 + z♮

and

δz♮ = (δF(y) − F2(y)𝕏1)𝕏1 − (δF(yn) − F2(yn))𝕏n,1𝕏n,1 + δF2(y)𝕏2 − δF2(yn)𝕏n,2.
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A straigforward estimation of the various terms leads to (τ ⩽1)

⟦z♮⟧3γ,τ ≲ (⟦z⟧γ,τ + ⟦z⟧∞,τ) + τγ⟦z♮⟧3γ,τ + ‖𝕏1 − 𝕏n,1‖γ +‖𝕏2 −𝕏n,2‖2γ

where the implicit constant can depend on y,yn,𝕏,𝕏n but can be checked to be uniformly bounded
in n. Using the equation we have also

⟦z⟧γ,τ ≲⟦z⟧∞,τ +‖𝕏1 −𝕏n,1‖γ +‖𝕏2 −𝕏n,2‖2γ + τ2γ⟦z♮⟧3γ,τ

Taking τ small enough we obtain

⟦z⟧γ,τ + ⟦z♮⟧3γ,τ ≲ ⟦z⟧∞,τ + ‖𝕏1 − 𝕏n,1‖γ +‖𝕏2 −𝕏n,2‖2γ

But now we have also

⟦z⟧∞,τ ≲∣z(0)∣ +τγ⟦z⟧γ,τ

so finally (for τ sufficiently small)

⟦z⟧∞,τ + ⟦z⟧γ,τ + ⟦z♮⟧3γ,τ ≲ ∣z(0)∣+ ‖𝕏1 − 𝕏n,1‖γ +‖𝕏2 −𝕏n,2‖2γ

and since z(0) =0 this quantity goes to zero as n →∞.

□
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