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• Young differential equations (YDEs) : existence and uniqueness.

• Euler scheme for YDE and asymptotic error analysis.

1 Young differential equations
Let us now study differential equations driven by irregular signals in the context of Young inte-
gration. We consider a family (Fα)α=1,…,m of Cb

2 vector fields on ℝd with which we form the Cb
2

mapping F: ℝd → ℒ(ℝm,ℝd) by letting F(ξ)eα = Fα(ξ) on the collection (eα)α=1,…,m of canonical
basis vectors of ℝm. We would like to define solutions of the Young differential equation (YDE)

∂ty(t) = F(y(t))∂tx(t), y(0) =ξ

for a given x∈Cγ([0,1];ℝm). When γ ∈ (0,1) the proper way to interpret this differential equation
is via the corresponding integral equation

y(t) = ξ + ∫0

t
F(y(s))dsx(s) =ξ + I(F(y(⋅)), x)(t), t ∈ [0, 1]. (1)

We cannot expect y to have better regularity than x (think about the case where F is constant) so
apriori we require y∈Cγ([0,1];ℝd). In this situation F(y(⋅))∈Cγ([0,1];ℒ(ℝm,ℝd)) if F is at least
Lipshitz and therefore the integral can be defined in the sense of Young under the condition that
γ >1/2. We will assume this all along this section.
Note that eq. (1) is equivalent to the following finite–increment formulation

δy(s, t) = F(y(s))δx(s, t) +o(∣t − s∣), y(0) = ξ. (2)

We denote by Clin
n the space of Cn functions with linear growth and bounded derivatives.

We first obtain uniform a–priori estimates on YDE, assuming existence.

Lemma 1. (Apriori estimates) If F is a Clin
1 family of vector fields and y is a solution to to eq. (1)

then

⟦y⟧γ,τ ⩽τ−γ

for any τ ⩽1 ∧ (CF,γ,y(0)‖x‖γ,1)−1/γ.

Proof. Consider the map Γx:Cγ →Cγ given by

Γx(y)(t):=ξ + IY(F(y(⋅)), x)(t), t ∈ [0, 1].
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By the properties of the Young integral we have

⟦Γx(y)⟧γ,τ ⩽C(1 +⟦y −y(0)⟧∞,τ +τγ⟦y⟧γ,τ)‖x‖γ,τ.

where C =CF,γ,y(0). Using the fact that

⟦y− y(0)⟧∞,τ ⩽ 2τγ⟦y⟧γ,τ

and that ‖x‖γ,τ ⩽‖x‖γ,1 for τ ⩽1 we have

⟦y⟧γ,τ = ⟦Γx(y)⟧γ,τ ⩽ C‖x‖γ,1 + Cτγ⟦y⟧γ,τ‖x‖γ,1

Taking τ such that Cτγ⟦y⟧γ,τ‖x‖γ,1 ⩽1/2 we conclude that ⟦y⟧γ,τ ⩽τ−γ. □

Let us now prove existence of solutions to eq. (1) by an approximation procedure.

Lemma 2. If F is a Clin
1 family of vector fields then there exists at least one solution y ∈ Cγ to

eq. (1).

Proof. Fix κ ∈ (1/2, γ) and take a sequence (xn ∈ C1)n which converges to x in Cκ. Let yn be the
unique solution to the ODE ∂tyn=F(yn)∂txn which exists by standard results on ODEs and the fact
that ∂txn is a bounded function. Note that this solution is also a solution of the YDE since it is easy
to see that yn satisfy the increment version of the YDE given in eq. (2). Let K =2CF,γ,ε‖x‖γ,1, then
eventually for n large we have ‖xn‖γ,1 ⩽ 2‖x‖γ,1 so we can choose τ small enough (independent
of n) such that τκCF,γ,ε‖x‖γ,1 ⩽ 1/2 for n large. Using this τ and Lemma 1 we have ⟦yn⟧κ,τ ⩽ τ−κ

uniformly in n. By Ascoli–Arzela we can take a uniformly convergent subsequence ynk →y∈ Cκ.
Then if we consider the increment equation we have

δyn(s, t) = F(yn(s))δxn(s, t) +yn
♯(s, t)

where by the apriori estimates in Lemma 1 we have ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣yn

♯(s, t)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣ ≲ et/τ∣t − s∣2κ uniformly in n for any

0< s< t. Passing to the limit along the chosen subsequence pointwise (in s< t) in this relation we
obtain that

∣δy(s, t) −F(y(s))δx(s, t)∣= lim
k

∣δynk(s, t) − F(ynk(s))δxnk(s, t)∣ =lim
k ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣ynk
♯ (s, t)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣ ≲et/τ∣t − s∣2κ

for all 0 < s < t. This immediately shows that y is a solution of the YDE for all times. □

Remark 3. The above proof works only in finite dimensions. However the a–prori estimate holds
also in infinite dimensions.

Theorem 4. Assume that F ∈ Clin
2 then eq. (1) has only one solution y= ΦF(ξ,x).

Proof. Assume we have two solutions y, ỹ and consider the equation for φ= y− ỹ which reads

φ(t) = IY(G(⋅,φ(⋅)), x)
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where

G(t,ξ) =F(y(t)) −F(y(t) −ξ) =−∫0

1
∇F(y(t) − τξ)dτξ.

We have

⟦G(⋅, φ(⋅))⟧γ,τ ⩽ CF,‖y‖,‖ỹ‖(⟦φ⟧γ,τ + ⟦φ⟧∞,τ) ⩽ CF,‖y‖,‖ỹ‖(⟦φ⟧γ,τ +⟦φ⟧∞,τ).

The estimate for the Young integral gives

⟦φ⟧γ,τ ⩽CF,‖y‖,‖ỹ‖τγ⟦φ⟧γ,τ‖x‖γ,τ.

so

⟦φ⟧γ,τ ⩽ CF,‖y‖,‖ỹ‖,‖x‖τγ⟦φ⟧γ,τ

and taking τ small enough we conclude that ⟦φ⟧γ,τ =0, that is y = ỹ. □

Remark 5. We can weaken substantially the requirements for uniqueness by a localization argu-
ment and require only F ∈Cloc

2 .

Exercise 1. Under the assumption F ∈Clin
2 prove that the map ΦF: ℝd × Cγ(ℝ m)→ Cγ(ℝd) given by y =ΦF(ξ, x) is

locally Lipshitz.

Lemma 6. (“Ito formula”) Let G∈ C2 then

G(y(t)) =G(ξ) +∫0

t
∇G(y(s))dy(s).= G(ξ) + ∫0

t
∇G(y(s))F(y(s))dx(s).

Proof. By Taylor expansion we have

δG(y)(s, t) = ∇G(y(s))δy(s, t) +O(∣t − s∣2γ).

By the definition of the Young integral we have

∫s

t
∇G(y(r))dy(r) = ∇G(y(s))δy(s, t) +O(∣t − s∣2γ).

and

∫s

t
∇G(y(r))F(y(r))dx(r) = ∇G(y(s))F(y(s))δx(s, t) +O(∣t − s∣2γ).

Now using the YDE (in the increment formulation) we note that

∇G(y(s))δy(s, t) + O(∣t − s∣2γ) = ∇G(y(s))F(y(s))δx(s, t) +O(∣t − s∣2γ).

So we have proven the claim since all these three objects are integrals of the same germ
∇G(y(s))F(y(s))δx(s, t) and then coincide. □
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1.1 An Euler scheme
Consider the YDE with F ∈Clin

2 and the corresponding Euler scheme of step 1/n:

yn(ti+1
n ) = y0 + ∑

0≤k≤i
F(yn(tkn)) (x(tk+1

n ) −x(tkn)) (3)

where we let tkn =k /n for all n⩾ 1, k ⩾ 0.

Theorem 7. The Euler scheme (3) converges pointwise to the solution y of the YDE (1). Moreover
Δn =yn −y satisfies

sup
0≤k<m≤n

∣Δn(tkn) −Δn(tmn )∣
∣tkn − tmn ∣γ ≤C n1−2γ.

Proof. We can embed the approximate discrete solution given by the Euler scheme in a contin-
uous path by setting

yn(t) = y(0) + ∑
0≤k≤⌊nt⌋

F(yn(tkn)) (x(t ∧ tk+1
n ) − x(tkn)) (4)

Note that yn is a Cγ path. Using the identity

F(yn(s)) (x(t) −x(s)) =∫s

t
F(yn(u)) d x(u) − ∫s

t

∫s

u
dv F(yn(v)) d x(u) (5)

we can write a RDE for the extension of the Euler scheme

yn(t) =y(0) +∫0

t
F(yn(s)) dx(s) −ψ n(t) (6)

where the driving term ψ n is given explicitly by a sum of iterated integrals:

ψ n(t) = ∑
0≤k≤⌊nt⌋ ∫tkn

t∧tk+1
n

∫tkn

u
dv F(yn(v)) dx(u) = ∑

0≤k≤n
ψ n,k(t)

where

ψ n,k(t) =∫tkn

(t∧tk+1
n )∨tkn

∫tkn

u
dv F(yn(v)) d x(u)

Step 1 Out first step will be to bound the γ–Hölder weigthed norm of ψ n. We are interested in
the limit n→∞ with τ fixed so we can assume τ>1/ n. In the Hölder norm ⟦ψ n⟧γ,τ there are three
kind of contributions: when both times belong to the same interval of size 1/ n, when they belongs
to adjacent intervals, and when both these conditions are not satisfied. When t, s ∈ [tkn, tk+1

n ] for
some k and t > s such that ∣t − s∣ ⩽τ ⩽1, we have

∣ψ n(t) −ψ n(s)∣ = ∣ψ n,k(t) −ψ n,k(s)∣≤ ∣t − s∣κ‖ψ n,k‖κ,[s,t] ≤ ∣t − s∣κ C‖Fʹ‖∞‖yn‖γ,[s,t]‖x‖γ,[s,t] n−γ.
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Where we exploited the following fact to obtain the factor n−γ: write ψ n,k(t) −ψ n,k(s) as

ψ n,k(t) −ψ n,k(s) =∫s

t

∫s

u
dv F(yn(v)) dx(u) +[F(yn(s)) −F(yn(tkn))] [x(t) − x(s)]

then

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∫s

t

∫s

u
dv F(yn(v)) d x(u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ ≤ C‖Fʹ‖∞‖yn‖γ,[s,t]‖x‖γ,[s,t] ∣t − s∣2γ

and, more easily,

∣[F(yn(s)) − F(yn(tkn))] [x(t) −x(s)]∣ ≤‖Fʹ‖∞‖yn‖γ,[s,t]‖x‖γ,[s,t] ∣t − s∣γ ∣s− tkn∣γ.

When s ∈ [tkn, tk+1
n ] and t ∈ [tk+1

n , tk+2
n ]:

∣ψ n(t) −ψ n(s)∣⩽∣ψ n(t) −ψ n(tk+1
n )∣+ ∣ψ n(tk+1

n ) − ψ n(s)∣
⩽C‖Fʹ‖∞‖yn‖γ,[s,t]‖x‖γ,[s,t] n−γ (∣t − tk+1

n ∣γ + ∣tk+1
n − s∣γ).

⩽C 21−κ‖Fʹ‖∞‖yn‖γ,[s,t]‖x‖γ,[s,t] n−γ ∣t − s∣γ

Otherwise, we have

∣ψ n(t) − ψ n(s)∣⩽∣ψ n(t) − ψ n(tk+1
n )∣ + ∣ψ n(tmn ) −ψ n(s)∣ + ∑

m≤q<k
∣ψ n(tq+1

n ) − ψ n(tqn)∣

⩽C‖Fʹ‖∞‖yn‖γ,[s,t]‖x‖γ,[s,t] n−γ (∣t − tk+1
n ∣γ + ∣tmn − s∣γ + (k − m) n−γ)

=C‖Fʹ‖∞‖yn‖γ,[s,t]‖x‖γ,[s,t] n−γ (∣t − tk+1
n ∣γ + ∣tmn − s∣γ + [(k − m)/n] n1−γ)

⩽C‖Fʹ‖∞‖yn‖γ,[s,t]‖x‖γ,[s,t] n1−2γ (∣t − tk+1
n ∣γ + ∣tmn − s∣γ + [(k − m)/n]γ)

⩽C 31−κ‖Fʹ‖∞‖yn‖γ,[s,t]‖x‖γ,[s,t] n1−2γ ∣t − s∣γ

and since κ <1 we obtain

⟦ψ n⟧γ,τ ≤ C⟦yn⟧γ,τ n1−2γ ≤ C⟦yn⟧γ,τ n1−2γ

where the constant C depends only on γ, F,‖x‖γ,1.

Step 2 Now we will show that the sequence (yn)n is uniformly bounded in the norm ⟦⋅⟧γ,τ. Using
eq. (6) we have

⟦yn⟧γ,τ ≤ C[1+ τγ⟦yn⟧γ,τ]‖x‖γ,1 + ⟦ψ n⟧γ,τ

So choosing τ small enough we obtain

⟦yn⟧γ,τ ≤ 2(C + ⟦ψ n⟧γ,τ).

for some constant C depending only on F, x,γ. Moreover, recalling the bound (1) we have

⟦yn⟧γ,τ ≤ C (C +n1−2γ⟦yn⟧γ,τ)
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and when n ⩾n0 where n0 is such that C n0
1−2γ ≤1/2 (and does not depend on y0) we end up with

⟦yn⟧γ,τ ≤C ⟦ψ n⟧γ,τ ≤C n1−2γ (7)

uniformly in n ⩾n0 and y0.
By compactness of the ball {z ∈ Cγ: ⟦z⟧γ,τ ≤ C∣y0∣, z0 = y0} in the uniform topology we have that
there exists a uniformly converging subsequence (ynk)k of (yn)n. It is easy to see that any limit
point should satisfy eq. (1) since the correction term in eq. (6) go to zero in the topology of Cγ.
Given uniquenes of the YDE (1) under the condition F ∈ C2 we know that the limit point of any
converging subsequence is the unique solution y, this implies that all the sequence converges to y
in the uniform topology (but by interpolation also in any κ–Holder norm for κ <γ).

Step 3 We look for an explicit bound for the convergence rate in Cγ. We are interested in com-
paring yn with the true solution y:

yn(t) −y(t) =∫0

t
[F(yn(s)) − F(y(s))] dx(s) −ψ n(t) (8)

F(yn(t)) − F(y(t)) = ∫0

1
dr Fʹ (y(t) + r (yn(t) − y(t))) (yn(t) −y(t))

⟦F(yn) −F(y)⟧γ,τ ≤ ‖Fʹ‖∞ ⟦yn −y⟧γ,τ +‖Fʹ ʹ‖∞ ⟦yn − y⟧∞,τ (2‖y‖γ +‖yn‖γ)

so we have

⟦yn −y⟧γ,τ ≤C τγ ⟦yn −y⟧γ,τ‖x‖γ,1 +⟦ψ n⟧γ,τ

where C =C(a,‖y‖γ,‖yn‖γ). Note that we need the un-weighted norms of y and yn in these bounds.
So in order to proceed we have to restricts all the considerations to a bounded interval [0, T].
Taking τ small enough we get

⟦yn − y⟧γ,τ ≤ 2⟦ψ n⟧γ,τ.

Recall that we have proven that ⟦ψ n⟧γ,τ ≤C n1−2γ, so we are done. □

1.2 Asymptotic error analysis for the Euler scheme
We would like now to characterize the asymptotic behavior of the Euler scheme for which we
have obtained an upper bound on the rate of convergence (in some Hölder norm). We have
already seen that the Euler scheme behaves like the YDE (cfr. (6)) with a small perturbation
given by the function ψ n introduced in the proof of theorem 7. Moreover this function is small
when n is large, since essentially ⟦ψ n⟧γ,τ ≲ n1−2κ. Our aim is to blow up the difference Δn =
yn − y between the Euler scheme and the true solution on a scale of the order of nα for some
α > 0 and obtain a finite limit under some reasonable assumption. This will identify a crite-
rion for the determination of the exact convergence rate of the Euler scheme. Ideally this criterion
should depend only on properties of the function x and not on the vectorfield F or the solution y.
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Hypothesis (Φ). Define the following approximated path

Φn(t) = ∑
0≤k≤⌊nt⌋ ∫tkn

t∧tk+1
n

∫tkn

u
d x(v) d x(u) = ∑

0≤k≤n
Φn,k(t) (9)

and assume that nα Φn → ϕ≠ 0 in Cγ for some α> 0

Actually is not difficult to see that we should have α ⩾ 2 γ − 1. Then we will be able to prove the
following result:

Theorem 8. Under Hyp. (Φ) and if α<3 γ −1, the rescaled error en=nα (yn −y) converges in Cγ

to the function e which is the unique solution of the RDE

e(t) =∫0

t
Fʹ(y(s)) e(s) dx(s) +∫0

t
Fʹ(y(s)) F(y(s)) dϕ(s)

Proof. Write an equation for en:

en(t) = nα ∫0

t
[F(yn(s)) − F(y(s))] d x(s) − nα ψ n(t) (10)

Step 1 The first term we will handle is nα ψ n(t).
First note that

∫s

t

∫s

u
dv F(yn(v)) d x(u) = ∫s

t

∫s

u
dv F(y(v)) dx(u) +O(n1−2γ∣t − s∣2γ)

and then that

∫s

t

∫s

u
dv F(y(v)) dx(u) =∫s

t

∫s

u
∇F(y(v))F (y(v))dx(v) dx(u)

=∇F(y(s))F (y(s))∫s

t

∫s

u
dx(v) dx(u) + O(∣t − s∣3γ).

These two bounds can be estabilished with straighforward computations (using the sewing map,
for example). Then

ψ n(t) = ∑
0≤k≤⌊nt⌋

∇F(y(tkn)) F(y(tkn)) ∫tkn

t∧tk+1
n

∫tkn

u
d x(v) d x(u) + ∑

0≤k≤⌊nt⌋
r(tkn, t ∧ tk+1

n )

Using the fact that ⟦yn − y⟧γ,τ ≤ C n1−2κ and arguments like the one used to estimante ⟦ψ n⟧γ,τ in
the proof of Thm. ? it is not difficult to show that the function

Rn(t) = ∑
0≤k≤⌊nt⌋

r(tkn, t ∧ tk+1
n )
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can be bounded as ⟦Rn⟧γ,τ ≤C n1−3γ where the constant depends only on a and y, and that

∑
0≤k≤⌊nt⌋

∇F(y(tkn)) F(y(tkn)) ∫tkn

t∧tk+1
n

∫tkn

u
dx(v) dx(u)

=∫0

t
Fʹ(y(s)) F(y(s)) d ϕn(s)

+ ∑
0≤k≤⌊nt⌋ ∫tkn

t∧tk+1
n

∫tkn

u

∫tkn

v
dw [Fʹ(y(w)) F(y(w))] dx(v) dx(u)

where again the last term can be shown to go to zero in Cγ as n1−3γ. Gathering all these observa-
tions we obtain that

nα ψ n⟶Cγ

∫0

⋅
Fʹ(y(s)) F(y(s)) dϕ(s) =:ψ (t)

as n →∞ whenever α <3 γ − 1.

Step 2 Let us return to eq. (10) and bound as follows:

⟦en⟧γ,τ ⩽C τγ ⟦nα (F(yn) − F(y))⟧γ,τ‖x‖τ,1 +⟦nα ψ n⟧γ,τ

Now observe that

nα [F(yn(t)) −F(y(t))] =∫0

1
dr ∇F (y(t) + r (yn(t) − y(t))) en(t)

so

⟦nα (F(yn) − F(y))⟧γ,τ⩽‖∇F‖∞⟦en⟧γ,τ +‖∇2F‖∞⟦en⟧∞,τ (2‖y‖γ,τ + ‖yn‖γ,τ)
⩽‖∇F‖∞⟦en⟧γ,τ +‖∇2F‖∞ τγ⟦en⟧γ,τ (2‖y‖γ,τ +‖yn‖γ,τ)

Then

⟦en⟧γ,τ ⩽C τγ⟦en⟧γ,τ + ⟦nα ψ n⟧γ,τ

Then as usual, when τ is small we obtain the bound ⟦en⟧γ,τ ⩽ C ‖nα ψ n‖κ. Moreover, for n large
enough we have ‖en‖ ⩽2C‖ψ ‖κ.

Step 3 Now that we have a uniform bound in Cγ for the sequence (en)n we can estimate its
distance form e using the equation

en(t) −e(t) =∫0

t
[nα (F(yn(s)) −F(y(s))) −Fʹ(y(s)) e(s)] d x(s) + ψ n(t) − ψ (t)

which we can rewrite as

en(t) − e(t) = ∫0

t
Fʹ(y(s)) (en(s) − e(s)) d x(s) + ∫0

t
[nα (F(yn(s)) − F(y(s))) − Fʹ(y(s)) en(s)] d x(s) +

ψ n(t) −ψ (t)
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Since ψ n → ψ in Cγ, it is not difficult, using standard arguments and this equation, to prove that
en →e in Cγ, as required. □

An improved scheme

Given the results of the previous section we can design an improved Euler scheme by subtracting
the limiting asymptotic error in the following way:

ŷn(ti+1
n ) =y0 + ∑

0≤k≤i
F(ŷn(tkn)) δx (tkn, tk+1

n ) +n−α ∑
0≤k≤i

(F∇F )(ŷn(k /n)) δϕ(tkn, tk+1
n ). (11)

Note that in this scheme it is not required to compute the double iterated integral of the function
x, but only to know its limiting behavior encoded in the process ϕ.
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